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ABSTRACT

A desirable property of learning systems is to be both effective and
interpretable. Towards this goal, recent models have been proposed
that first generate an extractive explanation from the input text and
then generate a prediction on just the explanation called explain-
then-predict models. These models primarily consider the task input
as a supervision signal in learning an extractive explanation and do
not effectively integrate rationales data as an additional inductive
bias to improve task performance.

We propose a novel yet simple approach ExPred, which uses
multi-task learning in the explanation generation phase effectively
trading-off explanation and prediction losses. Next, we use another
prediction network on just the extracted explanations for optimiz-
ing the task performance. We conduct an extensive evaluation of
our approach on three diverse language datasets – sentiment clas-
sification, fact-checking, and question answering – and find that
we substantially outperform existing approaches.

CCS CONCEPTS

• Computing methodologies→ Probabilistic reasoning.
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1 INTRODUCTION

Web content analysis using text has been recently dominated by
complex representation learning approaches using neural models.
A key concern using complex learning systems is regarding their
interpretability in that it is hard to determine if the predictions of
these models are grounded in the right reasons. Towards this, there
has been an upsurge of approaches that intend to interpret the
decisions of complex learning models using post-hoc analysis [22,
26, 29]. A key problem in post-hoc interpretability is in its inherent
uncertainty of the evaluation, that is – ground truth for the actual
machine rationale behind a certain decision ismissing. The alternate
design philosophy is to construct models that are interpretable by
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Input Passage: the san francisco bay area, referred to 
locally as the bay area is a populous region surrounding the 
san francisco and san pablo estuaries in northern california. 
The region encompasses the major cities and metropolitan 
areas of san jose, san francisco, and Oakland, along with 
smaller urban and rural areas. The bay area's nine counties 
are ......Santa Clara, Solana and Sonoma. Home to 
approximately 7.68 million people, the nine-county bay area 
contained many cities, towns, airports, and associated 
regional, state, and national parks, connected by a network 
of roads, highways, railroads, bridges, tunnels and 
commuter rail. The combined statistical area of the region 
is the second largest in california after the Los Angeles 
area.  

Query: san francisco bay area contains zero towns 

Label: REFUTE,  Predict: REFUTE  

Figure 1: An anecdotal example of an extractive explanation of

our ExPred model that refutes the query using a passage from the

FEVER dataset. The explanation is highlighted in green.

design, obviating the need for post-hoc interpretability, that produce
an explanation or rationale along with the decision [18, 19].

This paper aims to learn accurate models that are interpretable by
design by effectively using “rationales” data. A rationale is defined
to be a small yet sufficient part of the input text, short so that it
makes clear what is most important, and sufficient so that a correct
prediction can be made from the rationale alone [2]. For many
language tasks found in the Web, like fact-checking, sentiment
detection, and question answering, rationales are available that
encode human reasoning in the form of extractive task-specific
summaries, as shown in Figure 1. Rationale data has been used to
improve the performance of prediction tasks [27, 38, 39], but these
models do not generate explanations.

We are specifically interested in models where explanations are
first-class citizens, in that each prediction can be unambiguously
attributed to a reason or rationale that is human-understandable.
Towards this, we focus on a recently proposed framework that we
refer to as explain-then-predict models [2, 18, 19] . Such models per-
form the task prediction in a two-stage manner. In the explanation
phase, a model learns to extract the rationale from the input text.
In the subsequent prediction phase, another independent model
predicts the task output solely based on the extractive explanation.
Unlike the post-hoc approaches, the explain-then-predict setup
unambiguously attributes the reason for a given prediction to the
extractive explanations.

A crucial limitation of explain-then-predict models is that they
fail to learn accurate models since they either ignore or do not
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effectively utilize the rationales data as a supervision signal. Specif-
ically, Bastings et al. [2], Lei et al. [19], Yoon et al. [36] train end-
to-end models that are only supervised on task-specific training
data. On the other hand, Lehman et al. [18] follows a pipelined
approach that explicitly uses the rationales data in the explanation
generation phase but is agnostic to task-specific signals, thus not
being able to generalize well in the subsequent prediction phase.
This paper’s main objective is to exploit supervision signals from
both rationales data and task objective for generating task-aware
explanations to improve task performance.

Unlike earlier approaches, our idea is simple – we learn to gen-
erate explanations supervised by both task-specific and rationale-
based signals in our explanation generation phase. We realize this
by using multi-task learning, where task prediction and explanation
generation are both learned on a common encoder substrate (cf. Fig-
ure 2). After training the explanation model, in the prediction phase,
a separately parameterized model for task prediction is learned just
on the generated explanation. We refer to this scheme of predicting
and explaining first (in the explanation generation phase) and then
predicting again (in the prediction phase) as ExPred.

We conduct an extensive evaluation of ExPred on three dif-
ferent language tasks found in the Web, where human rationales
are provided – sentiment classification, fact checking and question
answering. We find that using a shared representation space for en-
coding the input for prediction and explanation generation results
in more task-specific explanations. We also observe that ExPred
can effectively balance the task and explanation performance by
learning to generate task-specific explanations.

Our contributions. In sum the key contributions of our work are
• We propose a novel explanation generation framework work
using multi-task learning ExPred that is task-aware and can
exploit rationales data for effective explanations.

• We show that our explanations show significant improve-
ments in task performance (up to 7%) and explanation accu-
racy (up to 20%) over existing baselines.

For the sake of reproducibility, the code for the experiments
described in this paper will be made available at https://github.com/
JoshuaGhost/expred.

2 RELATEDWORK

Classical models are known to exhibit a natural trade-off between
task performance and being interpretable. As a result, in recently
popular post-hoc interpretability approaches that do not negotiate
task performance and instead rely on interpreting already trained
models in a post-hoc manner [16, 22, 26, 34]. However, a fundamen-
tal limitation of such post-hoc approaches is that – explanations
might be faithful to the predictions of the model but might not
be faithful to the model’s actual decision-making process of the
model [28] or to human reasoning [40]. Secondly, and more worri-
some is the problem of evaluation of interpretability techniques due
to difficulty in gathering ground truth for evaluating an explanation
due to human bias [17].

Explain-then-predict models. Lei et al. [19] proposed a sequen-
tial approach of rationale generation followed by prediction using
the generated prediction. Similar frameworks that mainly differ in
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Figure 2: Overview of ExPred. Explanation generation supervised

by task objectives and explanation generation. Here auxiliary task is

the same as the actual task (the Task Prediction on the right).

how they perform end-to-end training due to the explanation sam-
pling step have been proposed subsequently. Common proposals for
training include using REINFORCE [19], actor-critic methods [36],
or re-parameterization tricks [2]. Lehman et al. [18] uses a similar
philosophy of decoupling rationale generator and predictor, albeit
a slightly different architecture and supervised using human ratio-
nales. Instead, we explicitly use human rationales to provide the
supervision signal and decouple the prediction network from the
explanation phase.

Rationale-based prediction. Related to our work is the work on
rationale classification and has roots in the seminal work of Zaidan
et al. [37], Zaidan and Eisner [38] that aims to improve model gen-
eralization by utilizing human rationales as inductive bias. The
closest to our work of building explain-then-predict models using
rationale data is DeYoung et al. [7], who instead use rationale pre-
dictions as regularizers to the task loss. We use these approaches
as competitors in our experiments.

Unlike us, all these approaches are agnostic to task supervision
when learning to generate explanations. An exception is Zhong et al.
[41] that showed supervising regularizes the attention layer with
human annotations while learning from task supervision. However,
it is not an explain-then-predict model. Specifically, it is hard to
unambiguously attribute the rationale of the prediction since the
prediction phase still has access to the input.

Interpretability for LanguageTasks.With the tremendous growth
of the Web [10, 11], many language tasks on the Web are being
treated learning tasks. For language tasks, there has been work on
post-hoc analysis of already learned neural models by analyzing
state activation [1, 9, 20] or attention weights [5, 12, 23, 35]. The
attention weights learned as weights assigned to token represen-
tation are intended to describe rationales. However, recently the
faithfulness of interpreting model prediction with soft attention
weights has been called into question [13, 33]. Specifically, the con-
textual entanglement of inputs is non-trivial. The prediction model
can still perform well even if the attention weights don’t correlate
with the (sub-)token weight as desired by humans. Our approach
for rationale based explanations differs in the type of architectures,
objectives, and general nature of its utility.

https://github.com/JoshuaGhost/expred
https://github.com/JoshuaGhost/expred


3 APPROACH

We aim to come up with a model that can generate explanations as
well as high-quality predictions, given access to human rationales
accompanying task-specific training instances. Human rationales
are sets of sequences of the input text that have been annotated by
humans as potential reasons for the prediction.

We formalize here the task of extractive rationale generation in the
context of neural models where we are provided with a sequence of
words as input, namely x =

〈
𝑥1, · · · , 𝑥 |𝑆 |

〉
, where |𝑆 | is the length

of the sequence and each 𝑥𝑖 ∈ R𝑑 denotes the vector representation
of the 𝑖-th word and task labels y. Additionally, we also assume that
each word 𝑥𝑖 has an associated Boolean label 𝑡𝑖 ∈ {0, 1}, where
𝑡𝑖 = 1 if word 𝑖 is a part of the rationale else 𝑡𝑖 = 0. The rationales of
the sequence is then t ∈ {0, 1} |𝑆 | Typically, rationales are sequences
of words and hence a potential rationale is a sub-sequence of the
input sequence. Note that multiple non-overlapping sub-sequences
might exist for a given input text.

3.1 Approach Overview

Our goal is to construct a explain-then-predict model that is com-
posed of a explanation generation network 𝑔𝜙 parameterized
by 𝜙 and a prediction network 𝑓 𝜃 parameterized by 𝜃 . The ex-
planation generation network 𝑔𝜙 first maps the input x into an
explanation mask t. Thereafter, the prediction network 𝑓 𝜃 maps
the masked input x ⊗ t to the task output y.

Our key insight is that in generating effective task-specific ex-
planations, we would ideally want to be influenced by task-specific
supervision along with rationale-specific supervision. Towards this,
we propose to use the Multi-task Learning (MTL) framework [3] for
the explanation generation phase. In MTL, the original prediction
task is trained along with multiple related auxiliary tasks using
shared or tied parameters [21] as a form of inductive transfer that
causes a model to prefer some hypothesis over others. This is in-
deed the case in our problem where the prediction and rationale
generation tasks are closely related and we intend to generate a
task-specific explanation.

Consequently, we introduce an auxiliary task in the explana-
tion generation phase modeled by a auxiliary task predictor net-

work 𝑓𝜓 parameterized by𝜓 such that 𝑓𝜓 also maps the input x
to task output y. We use the shared encoder architecture of MTL,
that is, we enforce that the explanation generator 𝑔𝜙 and auxiliary
task predictor 𝑓𝜓 share the same encoder enc(.) but different de-
coders . Note that the auxiliary task in our case is indeed the actual
prediction task.

We can now conceive different models for the explanation gen-
erator 𝑔𝜙 , auxiliary task predictor 𝑓𝜓 , and task predictor 𝑓 𝜃 . The
high-level architecture of our approach ExPred is presented in
Figure 2 where we follow a pipelined architecture of explanation
generation followed by the actual prediction task. In what follows
we describe our design choices and training details for each of these
networks.

3.2 Explanation Generation

In our explanation generation phase, we detail our architectural
design choices for encoders and decoders and our loss function.

3.2.1 Shared Encoder. Since contextualized models like BERT [6]
are now de-facto models like for representing text input, we use the
BERT model as our shared encoder enc(.) between 𝑔𝜙 and auxiliary
task predictor 𝑓𝜓 . In principle, BERT can be replaced by any text
encoding model as an encoder – LSTMs, other transformer-based
encoders, etc. We follow the standard practices in handling text
input in Bert. Specifically, a single sentence or sentence pair is fed
to Bert based on the type of tasks. Sentence tokens, segments, and
positional information are taken as inputs. Technically, for a single
sentence task, this is realized by forming an input to BERT of the
form [[𝐶𝐿𝑆], < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >] and padding each sequence in a mini-
batch to the maximum length (typically 512 tokens) in the batch.
Similarly, a sentence-pair task is realized by [[𝐶𝐿𝑆], < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1 >

, [𝑆𝐸𝑃], < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒2 >] and the entire sequence is of maximum
length 512 [6]. The final hidden state corresponding to the [𝐶𝐿𝑆]
token captures the high-level representation of the entire text and
other vectors represent the corresponding embeddings of the input
tokens. Hence, we obtain a 512 × 768 dimensional representation
of the input sequence where 512 is the maximum number of input
tokens.

The working principle of recent auto-regressive language models
is significantly better than word-based representations (word2vec)
and long dependency modeling networks (RNN and LSTM)[6].
Word2vec models assume independence between words present in
a sentence that does not hold. Contextual auto-regressive neural
models such as Bert overcome that limitation. The model also
works as a knowledge-base due to its pre-training over a large
amount of unlabelled corpus [25]. On the other hand, LSTM based
models were proposed to capture long term dependencies among
words and overcome the problem of vanishing gradient. However,
this scheme does not work for large paragraphs. Bert completely
relies on self-attention instead of multiple gates. This increases
the complexity quadratically but helps to capture the interaction
between each pair of words.

3.2.2 Decoders. We reiterate that we use the original prediction
task as the auxiliary task. We employ a simple MLP to map the
encoded input enc(x) to the task prediction y. The choice of expla-
nation decoder, however, induces interesting design choices. One
could in principle pose the generation task as a span detection task
or token prediction task. In this work, we pose the explanation
generation as an independent binary classification task over each
of the input words. We apply a gated recurrent unit (GRU) over the
sequence of output token representations of Bert to consider se-
quential dependencies among tokens. Then, token representations
from the GRU are pooled to form word representations followed
by a word-wise MLP. Figure 3 shows the diagram of our proposed
approach for the single sentence task (e.g., sentiment detection).
The same task and explanation generation approach is followed for
sentence pair tasks (question-answering) where both the sentences
are fed to Bert.

3.2.3 Loss function. The explanation loss is composed of individual
losses incurred on each input word and can be written as

L𝑒𝑥𝑝 =
1
|𝑆 |

|𝑆 |∑︁
𝑖=1

|𝑆𝑡𝑖 | · BCE(𝑝𝑖 , 𝑡𝑖 ), (1)
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Figure 3: Multi-task learning for joint optimization of task
objectives and explanation generation. 𝑔𝜙 (𝑇𝑜𝑘𝑖 ) denotes the
probability of 𝑇𝑜𝑘𝑖 to be an explanation token for the task.

𝑇𝑜𝑘1
corresponds to the first sub-token of the query sen-

tence and so on. The [𝑆𝐸𝑃] token can never be an explana-

tion therefore it’s𝐺𝑇 ≡ 0. Because of the input length restric-

tion of BERT, here 𝑛 = 511
.

where 𝑝𝑖 is the prediction and 𝑡𝑖 is the label of the 𝑖-th token, 𝑡𝑖
equals either to 0 or to 1; |𝑆 | stands for the length of the passage,
|𝑆𝑡𝑖 | is the count of tokens, whose label is the same as 𝑡𝑖 ’s; BCE(𝑝, 𝑡)
represents the binary cross-entropy between the prediction 𝑝 and
the label 𝑡 .

The overall loss function is the affine combination of the task and
explanation prediction. An additional parameter 𝜆 is used to balance
the contribution of both the terms, as shown in the Equation 2.

L𝑙𝑜𝑠𝑠 = L𝑡𝑎𝑠𝑘 + 𝜆L𝑒𝑥𝑝 , (2)

where L𝑙𝑜𝑠𝑠 is the overall loss and L𝑡𝑎𝑠𝑘 and L𝑒𝑥𝑝 are loss
functions for the task and explanation respectively. 𝜆 regulates
the importance of loss function between task and explanation.

A key challenge in explanation generation is the presence of
sparse labels, i.e., the majority of the input words/tokens are not
explanations. This leads to training issues due to the label imbal-
ance that the loss function has to account for. To account for label
sparsity, following Chawla et al. [4] we up-weight the log-likelihood
of rationale, while calculating the binary cross entropy (BCE). The
weights are inverse of the prior probabilities of each class within
each input passage, i.e., the inverse proportion of non-rationale
tokens in the passage.

3.3 Prediction Model

The input to the prediction phase is the extractive explanation as a
masked input x ⊗ 𝑔𝜙 (x). Specifically, we replace each token that
is not in the explanation with a wildcard token (period ’.’ here).
This is necessary to maintain the overall structure of the input
text. Note that since we have a pipelined approach, errors in the
explanation generation phase might lead to error magnification in
the prediction phase. Towards this, rather than considering all input
instances for training, we limit ourselves to input instances where
the auxiliary task prediction is the same as the actual task label, i.e.,
𝑓𝜓 (xi) == 𝑦𝑖 for a training instance (xi, 𝑦𝑖 ). We also choose Bert
as the network 𝑓 𝜃 /𝑓 𝜏 that aims to predict the true task label. The
second-stage model is also validated on such masked inputs. But

we don’t rule out any instance according to the auxiliary model
prediction during the validation to reflect what happens during test
time.

Mathematically, for an instance (x, t, 𝑦), the training function of
ExPred works as per equation. 3.

𝑓𝜓 (x) −→ {0, 1}

𝑔𝜙 (x) −→ {0, 1} |𝑆 |

𝑓 𝜃 (x ⊗ 𝑔𝜙 (x)) −→ {0, 1}, 𝑖 𝑓 𝑓𝜓 (x) = 𝑦

(3)

The inference is also similar but the output of the auxiliary task
predictor is not taken under consideration (eqn. 4).

𝑓𝜓 (x) −→ {0, 1}

𝑔𝜙 (x) −→ {0, 1} |𝑆 |

𝑓 𝜏 (x ⊗ 𝑔𝜙 (x)) −→ {0, 1}

(4)

4 EXPERIMENTAL EVALUATION

We first describe the experimental setup, baselines, and dataset
details. In the next section, we elaborate on the experimental results
in detail followed by further analysis.

4.1 Datasets

We consider three diverse language tasks for our evaluation from
the benchmark in DeYoung et al. [7]. All datasets are split in the
same way as provided in the benchmark. Since we use BERT for
representing inputs that have a natural length limitation, we re-
frain from experimenting with other datasets in the benchmark
that contain longer sentences and might require non-trivial input
segmentation. Extending our approach to documents with longer
sentences and other datasets in the benchmark is left for future
work.

Movie Reviews Zaidan et al. [37], Zaidan and Eisner [38]. One of
the original datasets providing extractive rationales, the movies
dataset has positive or negative sentiment labels on movie reviews.
As the included rationale annotations are not necessarily compre-
hensive (i.e., annotators were not asked to mark all text supporting
a label), Deyoung et al. collected a comprehensive evaluation set
on the final fold of the original dataset [24].

FEVER Thorne et al. [32] (short for Fact Extraction and VERi-
fication) is a fact-checking dataset. The task is to verify claims
from textual sources. In particular, each claim is to be classified as
supported, refuted or not enough information with reference to a
collection of potentially relevant source texts. We follow the setup
of DeYoung et al. [7] who restricted this dataset to supported or
refuted.

MultiRC Khashabi et al. [14]. This is a reading comprehension
dataset composed of questions with multiple correct answers that
by construction depend on information from multiple sentences.
In MultiRC, each Rationale is associated with a question, while
answers are independent of one another. We convert each ratio-
nale/question/answer triplet into an instance within our dataset.
Each answer candidate then has a label of True or False.



Approaches

Movie Reviews FEVER MultiRC

Macro F1 Token F1 Macro F1 Token F1 Macro F1 Token F1

DeYoung et al. [7] 0.914 0.285 0.719 0.234 0.655 0.456
Lei et al. [19] 0.920 0.322 0.718 -1 0.648 -1
Lehman et al. [18] 0.750 0.139 0.691 0.523 0.614 0.140
Bert-To-Bert 0.860 0.145 0.877 0.812 0.633 0.412
Expred-Stage-1 0.884 0.348 0.907 0.837 0.718 0.640

Expred (w/o Task Sup.) 0.814 0.142 0.795 0.801 0.725 0.609
ExPred 0.915 0.348 0.894 0.837 0.698 0.640

Human Explanation 0.899 1.0 0.921 1.0 0.759 1.0
Full Input 0.894 - 0.916 - 0.708 -

Table 1: Task and explanation performance of hard models, which is defined in section 5.2. Best performances , excluding

the Token F1 of human annotation, since they are always 1.0, are bold and the second bests are underlined. Results for the

competitors are kept the same as in the ERASER benchmark [7] whenever it is possible. Also according to [7],
1
indicates

rationale training degenerated due to the REINFORCE style training.

4.2 Baselines, Competitors, Variants

We consider the following competitors that also use a pipelined
approach to showcase the effectiveness of our approach

• Lei et al. [19]:An end-to-end explain-then-predict approach
where rationale generator and decoder are not supervised
on rationales;

• DeYoung et al. [7]: An improvement of the approach of
Lei et al. [19] where the final loss function has a regularizer
based on rationale data. Note that this approach is denoted
as Lei et al. (2016) and the previous one is denoted as Lei et
al. (2016) (u) in [7];

• Lehman et al. [18]: It is a pipeline approach, where the
explanation generation model is trained only on rationales,
and the predictor model is trained on ground truth human
rationales (instead of on machine predicted rationales as we
do) as input to predict the task labels.

• Bert-To-Bert: It is implemented in [7], where the gener-
ator and the predictor are replaced by Bert followed by
corresponding MLP heads. It is similar to our Expred (w/o
Task Sup.) but we insert an additional GRU layer into the
generator, i.e. after the Bert encoder of the explainer.

Baselines. In addition to the competitors introduced above, we add
two more baselines for better understanding our results – Full In-
put and Human Explanation. The Full Input baseline is trained
on the entire input to solely optimize for task performance and
has no explanation generation functionality. The Human Expla-
nation baseline refers to a prediction model trained just on the
ground-truth human rationales (all tokens not in the explanation
are replaced by a specific wild-card token).

ExPred variants. Next, we consider three variants of our ExPred
– (i) ExPred our original approach, (ii) Expred (w/o Task Sup.) that
only optimizes for explanations in the first stage (does not involve
MTL and is task unaware during explanation generation), and (iii)
Expred-Stage-1 that reports the auxiliary task performance from
the first stage, i.e, it does not involve the second prediction phase.

4.3 Metrics

Mostly denoted as Perf. in [7], the Macro F1 produced by the
classification_score from sklearn1 is used to evaluate task per-
formance. Macro Token-wise F1, presented as Token F1 in Table 1,
is used to measure the proximity of the explanation with human
rationales. The precision of an explanation is the fraction of com-
monly extracted rationale tokens (ER) and ground truth (GT) to-
kens in comparison to ER. While the recall of an explanation is
the fraction of common ER tokens with GT in comparison to GT.
The Token F1 is the harmonic average of precision and recall of
machine rationales.

4.4 Training setup and Hyper-parameters

All experiments are conducted on an Nvidia 32GB V100 using the
PyTorch and Tensorflow framework. We consider BertBase as the
shared encoder model with MAX_SEQ_LEN = 512 and the warm-
up proportion 0.1. Both the explanation generation and task predic-
tion models are trained using Adam optimizer [15] with a batch size
of 16, and learning_rate = 1𝑒 − 5. Models are trained for 10 epochs
with early-stopping criteria on the validation set and patience = 3.
The MLP for the task classification consists of a dropout layer with
a 10% chance of masking, followed by a 256 dimensional hidden
dense layer, again followed by a Sigmoid output layer. The expla-
nation decoder consists of a 128-dimensional GRU with a uniform
random kernel analyzer. Note that the final outputs of the explana-
tion generator correspond to the sub-token representations of Bert.
Adjacent sub-tokens are merged to their corresponding original
words through max-pooling. The best 𝜆 is chosen over a validation
set that provides the best trade-off between task performance and
token-F1. The best 𝜆 values for Movie Reviews, MultiRC, FEVER are
5.0, 20.0, 2.0 respectively. After training the explanation generation
network in ExPred, we remove instances that the auxiliary output
predicts wrongly, and use the rest to train the prediction model.
This is to avoid distraction from the wrong predictions from the
explanation prediction phase. Note that this is only done during

1https://scikit-learn.org/stable/



training, while the predictions on the validation and test sets are
regardless of the task prediction from the explanation phase.

5 RESULTS

We present the results of the effectiveness of our multi-task learning
rationale generation framework in Table 1. Our first observation
is that Human Explanation is quite effective in most datasets
and MultiRC is significantly better than Full Input in task perfor-
mance. This is perhaps unsurprising because Human Explanation
is trained on extractive rationales that contain task-specific discrim-
inative tokens. This also suggests that Full Input is sometimes
distracted by words or tokens unrelated to the task and dropping
terms altogether can result in reasonable task performance gains.

Among the variants of ExPred, Expred (w/o Task Sup.) model
is solely optimized on the explanation loss but has a moderate ex-
planation quality. The explanation performance of ExPred and its
variants are the best among all datasets and competitors. However,
it does not perform better than Human Explanation in terms of
task performance. This justifies our claim that purely optimizing
for explanation accuracy without considering the task context leads
to sub-optimal task performance. Note that Expred-Stage-1 and
ExPred generate the same explanation and have identical explana-
tion quality since they both share the same explanation generation
phase.

Expred (w/o Task Sup.) is outperformed in explanation accuracy
(in all datasets) and task accuracy (in Movie Reviews and FEVER) by
Expred-Stage-1 that jointly optimizes for the task and explanation
using shared encoding parameters. For MultiRC and FEVER, both
these variants are already much better than the competitors in task
performance but seem less congruent with human rationales. A
crucial difference between our variants with Lehman et al. [18] and
Bert-To-Bert is that the prediction network for those two models is
trained over human annotations. However, during the test phase,
the output of the machine-generated explanation is considered.
This introduces a distribution mismatch between the training and
testing phases. Unlike them, in both ExPred and Expred (w/o Task
Sup.) we use the output of the first stage for training the prediction
network.

Finally, we present the main result of our paper, i.e., ExPred and
its variants convincingly outperform all other competitors in expla-
nation performance by ∼ 8% on Movie Reviews, ∼ 5% on FEVER
and more strikingly ∼ 46% on MultiRC. Notably, the task perfor-
mance is at least preserved on Movie Reviews or even improved
on FEVER and MultiRC, compared with other competitors that use
joint or rationale data-agnostic training. Comparing with Human
Explanation further verifies our assumption that the models can
learn more effectively from rationales data, where the right reasons
of making predictions are highlighted in advance. We attribute
this due to two reasons found in our earlier observations – as in
the case of Human Explanation vs Full Input, ExPred being
trained on sparser (less noisy) input can predict better. Secondly, the
explanations are now more contextualized since they are learned
along with the task. Furthermore, we can see that the task perfor-
mance can even be sometimes slightly improved by adding a second
classifier in the ExPred compared with the task prediction in the
Expred-Stage-1(e.g. on Movie Reviews).

Avg. Rationale Len. Precision Recall
Movie Reviews

DeYoung et al. [7] 8.533 0.626 0.0333
Lei et al. [19] 430.563 0.315 0.542
Lehman et al. [18] 30.530 0.505 0.102
Bert-To-Bert 17.500 0.614 0.072
Expred (w/o Task Sup.) 70.864 0.676 0.112
ExPred 86.246 0.607 0.284
Human Explanation 240.844 1.000 1.000

FEVER

DeYoung et al. [7] 21.894 0.438 0.35
Lei et al. [19] 138.806 0.258 0.678
Lehman et al. [18] 30.882 0.584 0.508
Bert-To-Bert 29.127 0.904 0.811
Expred (w/o Task Sup.) 40.742 0.868 0.816
ExPred 44.670 0.834 0.908
Human Explanation 39.721 1.000 1.000

MultiRC

DeYoung et al. [7] 47.699 0.337 0.352
Lei et al. [19] 155.696 0.182 0.565
Lehman et al. [18] 25.150 0.245 0.118
Bert-To-Bert 21.699 0.726 0.326
Expred (w/o Task Sup.) 46.331 0.665 0.619
ExPred 55.870 0.627 0.704
Human Explanation 49.929 1.000 1.000

Table 2: Statistics of themachine-generated and human-annotated

rationales. Precision and Recall are computed with respect to corre-

sponding human-annotated explanations.

Task AUPRC Comp↑ Suff↓
Movie Reviews

BERT-LSTM
+ Attention 0.970 0.417 0.129 0.097

+ Gradient 0.970 0.385 0.142 0.112
ExPred-Soft 0.880 0.420 0.385 0.163
FEVER

GloVe-LSTM
+ Attention 0.870 0.235 0.037 0.122
+ Simple Gradient 0.870 0.232 0.059 0.136
ExPred-Soft 0.914 0.836 0.151 0.068

MultiRC

BERT-LSTM
+ Attention 0.655 0.244 0.036 0.052
+ Simple Gradient 0.655 0.224 0.077 0.064
ExPred-Soft 0.726 0.695 0.157 0.031

Table 3: Performance of soft models, where the metric of Task is

Macro F1, the same as in Table 1, Comp represents Comprehensive-
ness, the higher the better and Suff is Sufficiency, the lower the bet-

ter.
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Figure 4: 𝜆 selection criteria for ExPredwith 𝜆 (log-scale) on the validation set of Movie Reviews, FEVER andMultiRC. Models

for parameter-sweeping is trained on 100%, 10% and 25% of the training set, correspondingly.

5.1 Effect of 𝜆

We have essentially one hyperparameter 𝜆 from Equation 2 that
trades-off task and explanation losses during the explanation gener-
ation phase. Since our key objective is to strike an effective balance
between task performance and explanation accuracy, we validate
our model on a metric that is a simple linear combination of task
performance (macro F1) and explanation accuracy (Token F1). We
present the effect of 𝜆 on this combined metric in Figure 4.

It is evident from the figures that different datasets show different
patterns on the metric mixing both task and explanation perfor-
mance. However, in general, the general trend is that of a steep
increase followed by a steep deterioration leave the sweet point bal-
ancing the task and explanation performance. The 𝜆 corresponding
to the combined metric performance is then selected.

The key takeaway from our experiments on different values of
𝜆 is that we observe (more-or-less) a stable plateau in the range
𝜆 ∈ [1, 50] that exhibits low variability performance task and expla-
nation performance. However, the task performance deteriorates
rapidly after 𝜆 ≥ 50 (or low importance to task-specific loss) indicat-
ing that optimizing purely for explanation generation deteriorates
task performance.

5.2 Soft Selection Approaches

So far each input word is either a part of an explanation or not.
This is categorized as hard-(selection)-model according to DeYoung
et al. [7]. It also presents an alternate view to explanations as multi-
variable distributions over tokens derived from features, e.g. self-
attention values and name it as soft-(selection)-model. ExPred
can be cast into a soft selection approach explanation model by
constructing probability distributions from 𝑔𝜙 (·) scores of each
word before computing the binary cross-entropy.

To evaluate soft selection, the following metrics are used:
• AUPRC. or area under the precision-recall curve is used for
the soft selection models. Since soft-annotation for each to-
ken is assigned with a ranking score (sometimes probability
of being rationale).

• Comprehensiveness of a rationale 𝑟𝑖 𝑗 on instance 𝑖 and
class 𝑗 is defined as comprehensiveness(𝑟 ) = 𝑝𝑖 𝑗−𝑝𝑖 𝑗 , where
𝑝𝑖 𝑗 is model’s prediction on the original input, and 𝑝𝑖 𝑗 is
prediction over the input where the rationale 𝑟𝑖 𝑗 is stripped.

• Sufficiency on the other hand is defined as the complement
of the comprehensiveness, sufficiency = 𝑝𝑖 𝑗 − 𝑝𝑖 𝑗 , where 𝑝𝑖 𝑗
is the predicted probability using only rationale 𝑟𝑖 𝑗 .

Table 3 presents the result of ExPred in the soft selection mode.
We observe that ExPred-Soft performs consistently well both in
terms of task and rationale selection metrics. A higher value of
AUPRC indicates that a better choice of a threshold of per token
rationale prediction can help in improving explainability. A higher
value of comprehensiveness indicates that ExPred-Soft selects
the correct rationales that are responsible for accurate task label
prediction i.e., task performance drops significantly without these
tokens.

The low value of sufficiency also supports the fact i.e., it is an
indication that the model can learn the task well only based on
those tokens. For Movie Reviews, BERT-LSTM + Attention can
identify rationales well (low sufficiency) and the high value of
AUPRC indicates that rationales are following human-annotated
ones. However, the low value of comprehensiveness reveals that the
model can still learn without those rationales. Similar effects were
observed in previous work where it was found that attention-based
selections are not always rationales [13].

On the other hand, ExPred-Soft ensures that the rationales
learned are in accordance with human rationales and the model
performance significantly drops without those tokens. It fits with
our objective that the models should be interpretable by design.
ExPred-Soft performs well both in terms of comprehensiveness
and sufficiency for FEVERandMultiRC. ForMovie Reviews, ExPred-
Soft achieves high comprehensiveness but sufficiency is higher
(worse) than the baselines. This suggests that ExPred can retrieve
rationale tokens well but those are not sufficient to learn the task,
i.e., it fails to capture some rationale tokens. However, it can main-
tain a balance between task and rationale selection.

5.3 Machine explanations vs Human

explanation

From the previous results, it is tempting to conclude that we im-
prove task performance at the expense of being less congruent
with human rationales and vice versa. Towards getting a clearer
understanding we perform some further analysis to compare expla-
nations generated by our approach vs human rationales. We present
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Figure 5: Anecdotal examples of predictions and explanations by different baselines. Extractive explanations are marked in

RED.

the results of our analysis in anecdotal example in Figure 5 and
explanation statistics in Table 2. First, we observe that for Movie
Reviews our generated explanations are far shorter (avg. length
of 86.246 words) in length than those annotated by humans (avg.
length of 240 words). For this dataset, we also observe that while Ex-
Pred generates explanations that are sufficiently predictive, human
explanations tend to be more comprehensive. This is also supported
by the relatively high precision and low recall. From the anecdotal
evidence, we see evidence of this fact where human annotations are
far more verbose than any of the baselines. Unlike Movie Reviews,
the precision and the recall of the ExPred explanations are the
most balanced for the other datasets compared to other baseline
models. This in turn results in higher F1 values as presented in the
Table 1.

Comparing the explanations from other baselines, we observe
that ExPred tends to be more comprehensive (yet sparse) than

Lehmann et al. [18] and its Bert variant Bert-to-Bert. This suggests
that the sparsity constraints in Lehman et al [18] prevent the model
from learning comprehensive explanations and also have an effect
on task performance. We on the other hand do not have explicit
regularizers on sparsity.

Finally, as an artifact of the human annotation process, we see
that the explanations collected can sometimes be noisy due to the
under-specified and ambiguous nature of the task definition. Specif-
ically, for Movie Reviews we observe some predictive phrases are
missed by humans, and other phrases that do not contribute sub-
stantial predictive value are annotated. However, these rationales,
though noisy, still hold a lot of value for learning better models as
is exemplified by our results. Moreover, the lower Token-F1 score
should not be misconstrued with a lack of interpretability rather
than deviations from human rationales. Due to this comprehensive-
ness and sufficiency between human andmachine explanations [31]



proposes a further human evaluation of the machine-generated ex-
planations. Since our objective in this paper is to generate proper
rationales that are sufficient to make predictions, such human eval-
uation is left for future work.

6 CONCLUSIONS

In this paper we propose a novel yet simple approach ExPred, that
uses multi-task learning in the explanation generation phase to
provide better task-aware explanations for explain-then-predict
models. We find that we substantially outperform existing explain-
then-predict approaches by 7% - 47% by explicitly incorporating
task-specific supervision during explanation generation. Addition-
ally, we observed that we can also use ExPred in the soft selection
setting and observe competitive results. Our main observation is
that simple pipeline models like ExPred can indeed strike a good
balance between explanation quality and task performance, consis-
tently performing at par or even better than models when given
full inputs. This is in contrast to joint models like [19] that find it
hard to incorporate rationales data and are hard to train in general
and difficult to maintain.

There are many avenues for future work that are possible. First,
end-to-endmodels outperform ExPred in task performance forMovie
Reviews dataset indicating that for some tasks rationale data might
be limited or might not be sufficient to deliver better task perfor-
mance. We would want to scale rationale collection methods and
study the impact of the size of the rationale dataset on task per-
formance. We would also want to extend our current pipelined
approach to an end-to-end approach. Finally, an important open
question that this work prompts is that can extractive explanations
be generalized to otherWeb tasks like search [10, 30] and structured
data [8].
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