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ABSTRACT
This paper presents a new method for unsupervised video thumb-
nail selection. The developed network architecture selects video
thumbnails based on two criteria: the representativeness and the
aesthetic quality of their visual content. Training relies on a com-
bination of adversarial and reinforcement learning. The former is
used to train a discriminator, whose goal is to distinguish the origi-
nal from a reconstructed version of the video based on a small set of
candidate thumbnails. The discriminator’s feedback is a measure of
the representativeness of the selected thumbnails. This measure is
combined with estimates about the aesthetic quality of the thumb-
nails (made using a SoA Fully Convolutional Network) to form a
reward and train the thumbnail selector via reinforcement learning.
Experiments on two datasets (OVP and Youtube) show the com-
petitiveness of the proposed method against other SoA approaches.
An ablation study with respect to the adopted thumbnail selection
criteria documents the importance of considering the aesthetics,
and the contribution of this information when used in combination
with measures about the representativeness of the visual content.

CCS CONCEPTS
• Computing methodologies → Video summarization; Ma-
chine learning algorithms.
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1 INTRODUCTION
In the last few years we are witnessing a constantly growing pop-
ularity of social networks and video sharing platforms, that was
fueled - to a large extent - by a strong engagement of users with
devices carrying video recording and online content sharing func-
tionalities (e.g., smartphones, tablets and wearable cameras). This
technological environment stimulated a tremendous growth of
videos over the Internet. To facilitate users’ navigation in endless
collections of video content, most video sharing platforms and so-
cial networks represent each video, in their browsing interfaces or
when displaying lists of search results, using a thumbnail. Given
the plethora of online-available video content, the video thumbnail
plays a key role in terms of content consumption as it significantly
affects users when deciding whether to watch or skip a video.

Typically, a single key-frame is extracted from the video and
used as thumbnail. To increase descriptiveness, some video sharing
platforms (e.g., YouTube) provide a more vivid representation of the
video content using animated GIFs (composed of a few key-frames)
or short segments of the video. In any case, selecting a good thumb-
nail is a tedious and time-consuming process, as it requires a careful
inspection of the entire content and a manual selection of one or
more representative and aesthetically-pleasing key-frames. To ac-
celerate this process, several methods have been proposed over the
last years. Early approaches were based on rules about the optimal
video thumbnail and extracted low-level (e.g., luminance) and mid-
level features (e.g., appearance of faces) to assess frames’ alignment
with these rules [7, 13, 32]. More recent methods focused on a few
characteristics that were identified as the most important ones for
thumbnail selection, and relate to the representativeness and the
aesthetic quality or attractiveness of the visual content. These meth-
ods are based either on traditional feature extraction and clustering
algorithms [23, 25], or on the use of deep network architectures
[9]. Finally, a few recent works associate video thumbnail selection
with the users’ intentions when searching for video content online,
and propose multimodal approaches for dynamic video thumbnail
selection, according to textual user queries [14, 17, 26, 30].

In this work we tackle video thumbnail selection as a video sum-
marization task, where the goal is to select one or more key-frames
that provide a representative and aesthetically-pleasing synopsis
of the video content. In contrast to existing approaches that use
the same thumbnail selection criteria [9, 23] (a more detailed com-
parison with these approaches, that highlights the novelty of our
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method, is given in the last paragraph of Section 2), we propose
a new combination of adversarial and reinforcement learning to
train a novel deep-learning architecture for video thumbnail se-
lection. An adversarially-trained discriminator is used to make
estimates about the representativeness of one or more selected key-
frames of the video. These estimates are used in combination with
measurements about the aesthetic quality of the visual content to
form a reward signal. This reward signal is finally used to train the
developed architecture in a fully-unsupervised manner, based on
reinforcement learning. Our contributions are as follows:

• We introduce the use of reinforcement learning to learn the
task of video thumbnail selection based on estimates about
the representativeness and aesthetic quality of the visual
content of the video frames.

• We propose a novel architecture and a training pipeline that
combines the principles of adversarial and reinforcement
learning. An adversarially-trained discriminator is used to
measure the representativeness of the selected thumbnails,
and its feedback is used in combination with estimates about
the aesthetic quality to form a reward signal and train the
video thumbnail selector via reinforcement learning.

• We conduct an ablation study that highlights the importance
of considering the aesthetic quality of video frames when se-
lecting a thumbnail, and shows the contribution of this type
of information when used in combination with estimates
about the thumbnail’s representativeness, as proposed.

2 RELATEDWORK
Several approaches were proposed over the last years to automate
the video thumbnail selection process. In the sequel we focus on
methods that rely solely on the visual content, as these are more
closely related to the proposed approach. For the sake of com-
pleteness, though, we also briefly report on methods that exploit
additional modalities of the video and/or auxiliary data.

Early visual-based approaches relied on hand-crafted rules about
the optimal video thumbnail, and tailored features and mechanisms
to assess video frames’ alignment with these rules. In [13], video
thumbnail selection is associated with the appearance of faces,
the variance of luminance, and the color diversity. The extracted
features are used by a fusion mechanism that computes a score
indicating the appropriateness of a frame to be used as a thumbnail.
In [32], video thumbnails are selected based on their visual quality,
accessibility and thematic relevance. Visual quality is estimated
by the degree of blurriness [6]. Accessibility is evaluated using a
visual saliency model [10]. Thematic relevance is measured based
on the pair-wise similarities of shot-level key-frames. A more re-
cent approach [7] uses mid- and low-level features and a set of
energy cost functions that penalize the selection of frames with: i)
limited appearance or bad placement of faces/objects, ii) fast object
movement, iii) blurred content, and iv) limited scene steadiness.
The work of [23] is the first to correlate video thumbnail selection
with the frames’ visual quality. Initially, low-quality frames are dis-
carded by examining luminance, sharpness and uniformity. Then,
aesthetically-pleasing key-frames are extracted based on frame clus-
tering and a stillness value. Finally, these key-frames are evaluated
according to their relevance to the video content (quantified by the

size of the cluster containing the key-frame), and their aesthetic
quality (estimated using the stillness value or a trained random
forest regression model [5]). The approach in [25] examines several
low- and high-level factors (e.g., sharpness, saturation, brightness,
and the presence of subtitles and faces) to filter-out non-attractive
frames, and evaluates the remaining ones according to their rep-
resentativeness using a clustering-based approach similar to [23].
The main shortcoming of the above discussed approaches resides in
the fact that the definition of a complete set of commonly-accepted
and content-independent rules about the optimal video thumbnail,
as well as the engineering of the extracted features for evaluating
the video frames against these rules, are both highly-complex tasks.

To overcome the aforementioned shortcoming, some recent
works indicated a few commonly-desired characteristics for a video
thumbnail, and tried to build thumbnail selection mechanisms by
exploiting the learning efficiency of deep network architectures.
The approach in [9] focuses on the representativeness and aesthetic
quality of video frames. Building on the idea of [18], it assesses the
representativeness of a sparse set of key-frames by using them to
reconstruct the original video via an auto-encoding process. The
aesthetic quality is evaluated using a CNN-based estimator pre-
trained on the AVA dataset [19]. The sum of the computed scores
about the aesthetics and importance of video frames is used to
weight the video frames before the reconstruction process. Train-
ing is unsupervised and the goal is to learn how to select a set
of representative and aesthetically-pleasing frames. The work of
[4] examines the performance of two CNNs after being trained
for classifying frames into good and bad thumbnails. Training is
performed based on a set of Youtube videos and the assumption
that the thumbnails of videos with more than 1 million views are
good examples and thumbnails of videos with less than 100 views
are bad examples. A more extensive comparison of various CNNs
for video thumbnail selection is reported in [20]. Finally, [21] uses
a set of CNNs to select the best frame from short frame sequences.
In particular, a Siamese CNN is trained using pairs of images and
a piece-wise ranking loss. Information about the appearance and
quality of faces is incorporated using two additional CNNs. Their
output is used during training the Siamese CNN, to learn a frame
ranking policy that considers also the facial features of video frames.

A few other methods exploit information from additional modal-
ities or auxiliary sources. An early approach [27] uses keywords
from the textual video metadata to retrieve images from a database
and select visually-similar frames of the video as thumbnails. [28]
exploits textual metadata and audio to build a latent representation
of the entire content and select a frame which is the nearest one
to this representation in the learned latent space. The algorithm in
[14] selects a frame that is representative of the video content and
specific to the intent of the user’s query using a dual cross-media
relevance model [16]. The method in [17] utilizes a deep visual-
semantic embedding model to form a latent space and estimate the
relevance between the user’s query and the video frames. Building
on [17], the work in [26] presents a quality-aware relevance estima-
tion model which can capture the query-independent frame-quality
properties in the visual semantic embedding procedure. Finally,
[30] describes a dynamic thumbnail selection process that relies on
a temporal conditioned pointer network and a sentence-specified
video graph convolutional network.
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Figure 1: Overview of the proposed approach for unsupervised learning of video thumbnail selection.

Based on the aforementioned literature review, in terms of the
used modalities and criteria for video thumbnail selection, the pro-
posed approach is most closely related to [23] and [9] that choose
thumbnails based on measures about the aesthetic quality and rep-
resentativeness of their visual content. However, contrary to [23],
i) we assess the aesthetics using a SoA deep-learning-based ap-
proach (instead of using low-level features such as luminance and
sharpness), and ii) we estimate representativeness using a trainable
discriminator (instead of using a clustering algorithm). Moreover, in
contrast to [9], i) we maximize the similarity between the original
and the reconstructed version of the video based on the selected set
of key-frames, using an adversarially-trained discriminator (instead
of directly comparing them and trying to reduce a relevant loss),
and ii) we utilize the computed estimates about the aesthetics also
as part of a reward signal that is used to train our model via rein-
forcement learning (instead of using such estimates only as part of
the frames’ weighting before the video reconstruction process).

3 PROPOSED APPROACH
This section presents the proposed approach. It starts by discussing
the main concept behind the design of the analysis pipeline (Sec.
3.1). Then, it describes the building blocks of the developed network
architecture and the data flow at the training and inference time
(Sec. 3.2). Finally, it explains the adopted strategy for training of
the network (Sec. 3.3). With respect to the used notation: capital
bold letters denote matrices, small bold letters denote vectors and
non-bold letters (either capital or small) denote scalar values.

3.1 Overview
The overview of the proposed approach is depicted in Fig. 1. The
sequence of video frames is given as input to the Thumbnail Selector.
Each individual frame is evaluated by two internal mechanisms
that make estimates about the aesthetics and importance of the
visual content. The assessment of the aesthetic quality is performed
on a per frame basis; i.e., to assess the quality of a given frame, the
relevant mechanism examines the visual content of this particular
frame only. The evaluation of the visual importance is performed by

modeling the temporal dependencies of the entire frame sequence.
The fused output of the aforementioned mechanisms - formed
through an element-wise multiplication process that is represented
by the ⊗ symbol in Fig. 1 - is then utilized by a frame picking
mechanism, which selects a set of key-frames. The latter is based
on a set of discrete sampled actions over a multinomial distribution
that follows the distribution of the fused scores.

The set of selected key-frames is then forwarded to the Thumb-
nail Evaluator, and evaluated according to its aesthetic quality and
representativeness. The former is measured as the mean of the
computed aesthetic values for the selected key-frames. The latter
is estimated by quantifying the similarity between the original
video and a reconstructed version of it based on the set of selected
key-frames. The general approach of using Generative Adversarial
Networks to estimate this similarity was first proposed in [18] and
further extended by several other SoA video summarization algo-
rithms (e.g., [11, 12, 29]) as a means to assess the representativeness
of a set of key-frames that will be eventually used to generate a
static (a.k.a. video storyboard) or dynamic video summary (a.k.a.
video skim). The fused output of the aforementioned assessments -
computed by an average operator that is represented by the ⊘ sym-
bol in Fig. 1 - forms the feedback of the Evaluator with respect to
the representativeness and aesthetic quality of the set of candidate
thumbnails. This feedback is utilized as a reward signal for training
the Thumbnail Selector based on reinforcement learning.

Building on the above, we developed a network architecture
(presented in Sec. 3.2) and a pipeline for its unsupervised training
(described in Sec. 3.3). By combining adversarial and reinforcement
learning, the Thumbnail Selector utilizes the received feedback
from the Evaluator and, as the training proceeds, it progressively
learns how to select a small set of video key-frames that provide a
representative and aesthetically-pleasing synopsis of the video. The
frame or frames with the highest values are selected as thumbnails.

3.2 Network architecture
The developed network architecture is shown in Fig. 2. To present
each different component, in the sequel we describe the processing
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Figure 2: The proposed network architecture. Shaded boxes
indicate trainable parts. Dashed lines represent iterative pro-
cesses when training the Importance Estimator.

steps during training time where the entire network is utilized. At
inference time, only the Thumbnail Selector is used; further details
about this are given in the last paragraph of this section.

Given an input video of 𝑇 frames, the Thumbnail Selector ini-
tially assesses the visual aesthetic quality and importance of each
frame with the help of two estimators. The Aesthetic Estimator is
a model of the Fully Convolutional Network (FCN) from [3], pre-
trained on the AVA dataset [19]. This dataset was built to assist
the development and evaluation of image aesthetic quality assess-
ment methods. However, we exploit the knowledge of a network
trained on this dataset to assist the video thumbnail selection task,
given the lack of a more relevant dataset, and similarly to [9]. The
network from [3] is an extension of the VGG16 architecture [22],
that utilizes skip connections and a setup for minimizing the siz-
ing distortions of the input image. It exhibits SoA performance on

the task of image aesthetics assessment1. This estimator gets as
input the raw video and produces a sequence of scores that quan-
tify the aesthetic quality of each video frame (frame-level scores
𝒂 = {𝑎𝑡 }𝑇𝑡=1 with 𝑎𝑡 ∈ R and 0 ≤ 𝑎𝑡 ≤ 1). The Importance Es-
timator is composed of a Convolutional Neural Network (CNN)
and a bi-directional LSTM network (Bi-LSTM). The former is used
to extract a set of feature vectors (one per frame) that represent
the visual content of the frames (𝑿 = {𝒙𝒕 }𝑇𝑡=1). In particular, for
feature extraction we use a model of GoogleNet [24] trained on
ImageNet. The sequence of feature vectors is then processed by
a bi-directional LSTM that models the temporal dependency over
the sequence of frames in both forward and backward direction,
and assigns a score to each video frame that represents its impor-
tance (frame-level scores 𝒊 = {𝑖𝑡 }𝑇𝑡=1 with 𝑖𝑡 ∈ R and 0 ≤ 𝑖𝑡 ≤ 1).
The computed scores about the aesthetic quality and importance
of the frames’ visual content are then fused based on an element-
wise multiplication process (represented by the ⊗ symbol in Fig.
2), forming a new sequence of scores that capture information
about both of the conducted assessments (frame-level scores 𝒔 =
{𝑠𝑡 }𝑇𝑡=1 with 𝑠𝑡 ∈ R and 0 ≤ 𝑠𝑡 ≤ 1). This sequence of scores is
used by the Picking Mechanism of the Thumbnail Selector, that
participates in a series of 𝑁 training episodes as part of the applied
reinforcement learning strategy. In each episode 𝑒 , the Picking
Mechanism selects a small set of frames as candidate thumbnails,
based on a set of 𝑀 discrete sampled actions over the group of
video frames (𝒑𝒆 = {𝑝𝑘 }𝑀𝑘=1 with 𝑝𝑘 ∈ N and 1 ≤ 𝑝𝑘 ≤ 𝑇 ); each
action indicates the selection or not of a video frame, and a frame
can be selected more than once throughout the picking process.
These actions lead to an updated sequence of frame-level scores
per training episode, where the initially computed score for each
selected frame is increased by 100% after a selection (𝒔′𝒆 = {𝑠 ′𝑡 }𝑇𝑡=1).

The output of the thumbnail selection process (i.e., the set of
selected candidate thumbnails 𝒑𝒆 = {𝑝𝑘 }𝑀𝑘=1 and the updated se-
quence of frame-level scores 𝒔′𝒆 = {𝑠 ′𝑡 }𝑇𝑡=1) is given as input to the
Thumbnail Evaluator. The information about the selected frames
is utilized by the Aesthetic Evaluator. Given this information, the
latter computes an overall aesthetics score for the set of candidate
thumbnails, as the average of the assigned aesthetics scores in the se-
lected frames by the relevant mechanism of the Thumbnail Selector.
This score forms the Aesthetics reward of the Thumbnail Evaluator
for the current training episode (𝑟𝑎𝑒 ∈ R). The updated sequence of
frame-level scores, that also carries information about the choices
of the Thumbnail Selector, is used to create a weighted version of
the original feature vectors (𝑾𝒆 = {𝒘𝒕 }𝑇𝑡=1). This weighted version
is given as input to the Representativeness Evaluator. The latter
is composed of a Generator and a Discriminator that are being
trained in an adversarial manner. The Generator is an LSTM-based
Variational Auto-Encoder which tries to discover the underlying
structure of the weighted data after the choices made by the Thumb-
nail Selector, and reconstruct the original data by drawing samples
from a distribution over the learned latent space (𝑿 ′

𝒆 = {𝒙 ′𝒕 }
𝑇
𝑡=1).

The goal of this encoding-decoding process is to minimize the re-
construction error and produce a representation of the original
video that fools the Discriminator. The latter is an LSTM that gets
as input the original feature vectors𝑿 and the reconstructed feature

1Code retrieved from: https://github.com/bmezaris/fully_convolutional_networks
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vectors in each training episode 𝑿 ′
𝒆 , based on the Thumbnail Selec-

tor’s choices and the following encoding-decoding process. Then, it
defines a new latent representation for each of the aforementioned
versions of feature vectors, and computes the reconstruction loss
𝐿𝑟𝑒𝑐 (scalar value) based on the proximity of these representations.
The subtraction of the computed loss value from the unit (1 − 𝐿𝑟𝑒𝑐 )
forms the Representativeness reward of the Thumbnail Evaluator
for the current training episode (𝑟𝑏𝑒 ∈ R). Finally, the computed
rewards by the Aesthetics and Representativeness Evaluators are
fused through an averaging operator (represented by the ⊘ symbol
in Fig. 2). The output of this operation defines the overall reward
for the current training episode (𝑟𝑒 ∈ R). This reward represents
the feedback of the Thumbnail Evaluator and is used to train the
Thumbnail Selector through reinforcement learning.

At inference time the Thumbnail Evaluator gets as input the
raw video content. Assuming a video of 𝑇 frames, it produces a
sequence of frame-level scores (𝒔′ = {𝑠 ′𝑡 }𝑇𝑡=1) that signify each
frame’s suitability - according to the aesthetics and importance of
its visual content - to be a video thumbnail. The analysis involves
the processing of the video frames by the Aesthetics and Importance
Estimators of the Thumbnail Selector. The former processes the
frame sequence and assigns a score to every video frame according
to the aesthetic quality of its visual content (𝒂 = {𝑎𝑡 }𝑇𝑡=1). The latter
represents the visual content of the video frames with the help
of a pretrained CNN which extracts one feature vector per frame
(𝑿 = {𝒙𝒕 }𝑇𝑡=1). The sequence of the extracted feature vectors is then
processed by the trainable bi-directional LSTM which computes an
importance score for every frame, based on its temporal dependency
with the other frames of the video (𝒊 = {𝑖𝑡 }𝑇𝑡=1). The calculated
aesthetics and importance scores are combined via an element-wise
multiplication procedure and form a sequence of fused scores (𝒔 =
{𝑠𝑡 }𝑇𝑡=1). Finally, based on the sequence of fused scores the Picking
Mechanism of the Thumbnail Selector chooses a small set of frames
based on a set of 𝑀 discrete sampled actions over a multinomial
distribution that follows the distribution of the fused data. These
choices result in an updated sequence of frame-level scores with
increased values for the selected video frames (𝒔′ = {𝑠 ′𝑡 }𝑇𝑡=1). Finally,
the top-scored frame or frames are selected as the video thumbnails.

3.3 Learning objectives and pipeline
The trainable parts of the developed architecture are indicated by
the shaded boxes in Fig. 2. The learning objectives for training the
Encoder, Decoder and Discriminator of the proposed architecture
include: a prior loss (𝐿𝑝𝑟𝑖𝑜𝑟 ), a reconstruction loss (𝐿𝑟𝑒𝑐 ), the “origi-
nal” (𝐿𝑂𝑅𝐼𝐺 ) and “summary” (𝐿𝑆𝑈𝑀 ) losses, and the generator loss
(𝐿𝐺𝐸𝑁 ). For sake of space we provide a short explanation of these
losses and refer the reader to [1, 18] for a more detailed descrip-
tion. Then, we present the applied episodic reinforcement learning
approach for training the bi-directional LSTM component of the
Importance Estimator of the architecture.

𝐿𝑝𝑟𝑖𝑜𝑟 measures how much information is lost when using the
Encoder’s latent space to represent the prior distribution defined by
the Variational Auto-Encoder that acts as the Generator of the Rep-
resentativeness Evaluator. 𝐿𝑟𝑒𝑐 estimates the distance between the
original and the reconstructed feature vectors, based on a learned
latent representation in the last hidden layer of the Discriminator,

Algorithm 1 The applied episodic REINFORCE algorithm for train-
ing the Importance Estimator of the developed architecture.
Notation: T is the number of video frames, M is the number of

selected key-frames, N is the number of training episodes per
epoch, 𝑎𝑝 is the aesthetic score for frame p, b is a constant
baseline that facilitates network’s convergence, L is the loss,
and MDIST is the multinomial distribution for action sampling
given the set of scores 𝒔 = {𝑠𝑡 }𝑇𝑡=1; for the 𝑒

𝑡ℎ episode: 𝒑𝒆 =

{𝑝𝑘 }𝑀𝑘=1 is a vector with the indices of the selected key-frames,
𝐿𝑟𝑒𝑐𝑒 is the reconstruction loss, 𝑟𝑎𝑒 is the aesthetics reward, 𝑟𝑏𝑒
is the representativeness reward, 𝑟𝑒 is the overall reward

Input: A training sample (video).
Output: The computed gradients for this training sample.
1: for 𝑒 = 1 → 𝑁 do
2: # compute aesthetics reward: 𝑟𝑎𝑒 = 1

𝑀

∑𝑀
𝑘=1 𝑎𝑝𝑘

3: # compute representativeness reward: 𝑟𝑏𝑒 = 1 − 𝐿𝑟𝑒𝑐𝑒

4: # compute overall reward: 𝑟𝑒 =
𝑟𝑎𝑒 +𝑟𝑏𝑒

2
5: # compute logarithm of probability density function

𝑙𝑜𝑔_𝑝𝑟𝑜𝑏𝑒 = 𝑀𝐷𝐼𝑆𝑇 .𝑙𝑜𝑔_𝑝𝑟𝑜𝑏 (𝒑𝒆)
6: # compute expected reward: 𝑒𝑟𝑒 = 𝑙𝑜𝑔_𝑝𝑟𝑜𝑏𝑒 (𝑟𝑒 − 𝑏)
7: # minimize negative expected reward: 𝐿 = −𝑒𝑟𝑒
8: # compute gradients: 𝐿.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ()
9: # update b based on moving average of received rewards
𝑏 = 0.9𝑏 + 0.1 1

𝑁

∑𝑁
𝑒=1 𝑟𝑒

that is part of the Representativeness Evaluator. 𝐿𝑂𝑅𝐼𝐺 and 𝐿𝑆𝑈𝑀

relate to a label-based training approach (labels “1” and “0” denote
the original and the reconstructed feature vectors for the adversarial
part of our method) and are used to train the Discriminator; 𝐿𝑂𝑅𝐼𝐺

is used to minimize the difference between the computed probabil-
ity and label “1” when the Discriminator gets the original feature
vectors, and 𝐿𝑆𝑈𝑀 is used to minimize the difference between the
computed probability and label “0” when the Discriminator gets
the thumbnail-based reconstructed feature vectors. Finally, 𝐿𝐺𝐸𝑁 is
used to minimize the difference between the probability computed
by the Discriminator when the latter is fed with the reconstructed
feature vectors and label “1”, thus forcing the Generator to recon-
struct a video that is hard to distinguish from the original.

To train the Importance Estimator we apply an episodic REIN-
FORCE algorithm, as implemented in [33] and described in Alg. 1.
Given the 𝑒𝑡ℎ training episode, the computed aesthetics (𝑟𝑎𝑒 ) and
representativeness (𝑟𝑏𝑒 ) rewards for the set of selected key-frames
are combined (via an averaging operation) to form the overall re-
ward for the episode (𝑟𝑒 ). The latter is then used to compute the
maximum expected reward based on the logarithm of the prob-
ability density function evaluated for the given sampled actions
(selected key-frames) of the multinomial distribution, and a con-
stant baseline b. The loss L that is used to train the Importance
Estimator is formed so as to minimize the negative expected reward.
After the end of the training episodes, the gradients are computed
based on the accumulated loss value, and the baseline b is updated
based on the moving average of the received rewards during the
episodes. Based on this training strategy, the Importance Estimator
learns a policy for scoring the video frames, by maximizing the
expected rewards from the Thumbnail Evaluator.
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Figure 3: Reward curves for the proposed model. The horizontal axis in all plots indicates the epoch number. These curves
show smooth training of the model, and the ability of the Thumbnail Selector to get higher rewards as the training proceeds.

With regards to the training pipeline, we follow a step-wise ap-
proach similar to the one in [1]. First we update the Encoder of
the architecture. Then, having the Encoder updated, we proceed by
updating the Decoder. Subsequently, having the aforementioned
components updated (i.e., having some knowledge about the task),
we update the Discriminator. Finally, based on the received feedback
from the updated Discriminator, we update the Importance Estima-
tor. The above described step-wise learning process allows all the
different components to be trained effectively, and the Thumbnail
Selector gets higher rewards as the training proceeds (see Fig. 3).

4 EXPERIMENTS
This section reports on the conducted experiments. It starts by pre-
senting the utilized datasets and evaluation approach (Sec. 4.1), and
continues by providing details about the implemented architecture
and the applied training process (Sec. 4.2). Subsequently, it describes
the findings of performance comparisons with other methods of the
literature (Sec. 4.3). Finally, it discusses the setup and the outcomes
of an ablation study that aims to assess the contribution of each
adopted criterion for thumbnail selection (Sec. 4.4).

4.1 Datasets and evaluation approach
A study of the literature indicated the lack of a commonly-accepted
protocol for evaluating video thumbnail selection. A few works per-
form assessments based on sets of proprietary or collected data and
subjective human evaluations (e.g., [7, 17, 25, 32]). Other approaches
rely on publicly-available data but differ in the way they estimate
similarity among the selected and the ground-truth thumbnails for
a given video. For example, [9] uses the OVP and Youtube datasets
[8] and estimates similarity based on the Structural Similarity In-
dex (SSIM) and a predefined threshold. [23] uses the Yahoo dataset
and estimates similarity using the SIFTFlow algorithm [15] and an
experimentally-defined threshold. A recent multimodal approach
[28] uses a subset of the Yahoo dataset, computes the Mean Squared
Error among the extracted representations in a latent space, and
reports results for different values of the computed distance.

Given the above, we choose to assess the performance of the pro-
posed method using the datasets and evaluation protocol adopted
in [9]. So, in terms of data we utilize the OVP and Youtube datasets.
Each of these datasets is made of 50 videos with diverse video con-
tent, such as documentaries, historical, and lecture videos (OVP
dataset) and news, TV-shows and home videos (Youtube dataset).

The video duration ranges from 46 sec. to 3.5 min. in the case of
the OVP videos, and from 9 sec. to approximately 11 min. in the
case of Youtube videos. Each video of these datasets has been an-
notated by 5 users, where each user was asked to select a set of
representative key-frames. Following the evaluation approach in
[9] that relates to the thumbnail selection task, we consider the
top-3 selected key-frames among all annotators for a given video as
the ground-truth thumbnails for this video. As a side note, through
this procedure some videos are associated with more than 3 ground-
truth thumbnails, due to the existence of more than 3 key-frames
with the same ranking according to the number of selections made
by the human annotators. Finally, in terms of the utilized measure
we quantify the performance of the proposed method based on a
top-3 matching process - i.e., the top-3 selected thumbnails by our
method against the top-3 ground-truth thumbnails - similarly to [9].
In addition, we measure the performance when considering only
the top-1 machine- and user-selected thumbnails for each video.

4.2 Implementation details
All videos were downsampled to 2 fps. The aesthetics quality of
each video frame was computed as the softmax of the values in the
final layer of the utilized FCN architecture of [3]. To represent the
visual content of the video frames, we used the output of pool5 layer
of GoogleNet [24] trained on ImageNet, and extracted one feature
vector (containing 1024 values) per frame. The trainable part of the
Importance Estimator is made of a 2-layer bi-directional LSTMwith
512 hidden units. All the different parts of the Representativeness
Evaluator are 2-layer LSTMs with 512 hidden units. Training is
performed in a full-batch mode using the Adam optimizer. The
number of candidate thumbnails M is set equal to 10, and the same
holds for the number of episodes N per training epoch, 𝑁 = 10. The
learning rate for all components but the Discriminator is 10−4 and
for the latter one is 10−5. Training stops after a maximum number
of epochs (100 in our case). As a well-trained model we select the
one that maximizes the overall reward on the entire set of training
data (see the rightmost graph of Fig. 3). With respect to the used
data, we adopted the typical learning setting in most SoA video
summarization works (e.g., [1, 18, 31]) where the used dataset is
split into two non-overlapping sets; a training set containing 80% of
data, and a testing set made of the remaining 20% of data. In the case
of Youtube, we excluded 10 cartoon videos, since the utilized net-
works for feature extraction (the GoogleNet of [24]) and aesthetic
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quality estimation (the FCN architecture of [3]) cannot provide
meaningful representations and aesthetics measurements for the
content of these videos. Finally, driven by the recent reportings in
[2] about the varying difficulty of the different randomly-created
splits of data of other relevant datasets (that are extensively used for
evaluating video summarization algorithms), to reduce the impact
of the utilized data split for training and testing our method we run
our experiments on 10 different randomly-created splits and in the
following we report the average performance over these runs.

4.3 Performance comparisons
The proposed approach is compared against a baseline that selects
video thumbnails randomly, and a set of SoA approaches for video
thumbnail selection and summarization from the literature. To
estimate the performance of the baseline, we randomly scored the
video frames of each test video based on a uniform distribution of
probabilities. Then, we evaluated the performance of this baseline
on a given test video, by comparing the top-1 and top-3 scoring
frames with the defined ground-truth thumbnails for this video.
This experiment was repeated 100 times for the videos of each
utilized test set in our experiments, and the overall average score
over these iterations and over the 10 different data splits is reported.

Table 1 presents the experimental outcomes when using the top-
3 selected key-frames by all human annotators, as the ground-truth
thumbnails for each video. The reported values express “Precision
at k” in percentages. When 𝑘 = 3, we implement the evaluation
protocol of [9], that compares the top-3 automatically-selected and
the top-3 ground-truth thumbnails. The reported results in this
table show that the proposed approach is the best-performing one
in both datasets and both experimental settings. More specifically,
when using the top-3 selected thumbnails for evaluation ourmethod
outperforms all the other reported approaches in both OVP and
Youtube datasets. Nevertheless, we should stress that the reported
values for the first three compared methods (presented in [9, 18, 23])
are the ones reported in [9]; their experimental reproduction as
part of this work was not feasible due to the limited implementa-
tion details provided in [9]. For example there are no details about
the used CNN for feature extraction, the split of data into training
and testing samples, and the number of iterations (if any) of the
conducted experiments. In the most challenging scenario where
only one thumbnail is selected and compared with the 3-thumbnails
ground-truth (P@1), the proposed method is by far more competi-
tive than the considered baseline, showing a performance increase
by approximately 100% compared to random selection. In addi-
tion our method seems to be more effectively-tailored to the video
thumbnail selection task compared to the SoA video summarization
algorithm from [1], that was evaluated under the same experimental
conditions using its publicly-available implementation2.

Table 2 reports our findings when only the top-1 selected key-
frame by all human annotators is used as the ground-truth thumb-
nail for each video. Our comparisons involve the baseline (random
selection), and the SoA video summarization method from [1]. Even
in this more demanding scenario - which is much closer to the users’
needs when mature video thumbnail selection technologies will be
used in practice - our method performs significantly better than

2https://github.com/e-apostolidis/AC-SUM-GAN

Table 1: Performance comparison when using the top-3 se-
lected key-frames by the human annotators as the ground-
truth thumbnails for each video. P@k denotes “Precision at
k” (as percentage). Best scores in bold font.

OVP Youtube
P@1 P@3 P@1 P@3

Baseline (random) 15.79 32.51 7.53 17.94
Mahasseni et al. [18] - 7.80 - 11.34
Song et al. [23] - 11.72 - 16.47
Gu et al. [9] - 12.18 - 18.25
Apostolidis et al. [1] 15.00 24.00 8.75 15.00
Proposed approach 31.00 40.00 15.00 20.00

Table 2: Performance comparison when using the top-1 se-
lected key-frames by the human annotators as the ground-
truth thumbnails for each video. P@k denotes “Precision at
k” (as percentage). Best scores in bold font.

OVP Youtube
P@1 P@3 P@1 P@3

Baseline (random) 6.36 16.66 4.23 9.98
Apostolidis et al. [1] 7.00 14.00 6.25 8.75
Proposed approach 17.00 21.00 10.00 16.25

Table 3: The variants of the proposed approach, that were
examined in the ablation study.

Aesthetic quality estimations Representativ.
estimationsIn frame selection As a reward

Variant #1 ✓ ✓ X
Variant #2 X X ✓
Variant #3 ✓ X ✓
Variant #4 X ✓ ✓
Proposed
approach ✓ ✓ ✓

the baseline (being two times more precise when selecting a single
thumbnail) and clearly exceeds the performance of a SoA video
summarization method in both datasets and evaluation settings.

With regards to space requirements, the memory footprint of
the network is 1.2GB. Concerning time requirements, on a PC with
an i7-3770K CPU, 32GB RAM and an RTX2080Ti GPU, the time
needed for training using the OVP and Youtube datasets is 1.5 and
2.4 min. per epoch respectively (average values over the 10 used
data splits). At inference time, thumbnail selection takes less than
0.3 sec. per video. Finally, feature extraction and aesthetics scoring
estimation takes about 6 and 30 msec. per frame, respectively.

4.4 Ablation study
To assess the impact of each of the adopted criteria for thumbnail se-
lection, we conduct an ablation study which includes the following
variants of the proposed approach (also presented in Table 3):
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Table 4: Ablation study based on the performance (P@k (%) with k = 1, 3) of four variants of the proposed approach, on the
OVP and Youtube datasets. Best scores in bold font, second best scores underlined.

Thumbnail selection criteria OVP Youtube

Aesthetics estimations Represent.
estimations

Using top-3
human selections

Using top-1
human selections

Using top-3
human selections

Using top-1
human selections

Frame picking Reward P@1 P@3 P@1 P@3 P@1 P@3 P@1 P@3
Baseline
(random) - - - 15.79 32.51 6.36 16.66 7.53 17.94 4.23 9.98

Variant #1 ✓ ✓ X 16.00 20.00 8.00 12.00 6.00 17.50 5.00 7.50
Variant #2 X X ✓ 20.00 30.00 8.00 13.00 10.00 18.75 3.75 8.75
Variant #3 ✓ X ✓ 12.00 36.00 3.00 18.00 10.00 18.75 6.25 12.50
Variant #4 X ✓ ✓ 30.00 39.00 18.00 23.00 13.75 16.25 10.00 12.50
Proposed
approach ✓ ✓ ✓ 31.00 40.00 17.00 21.00 15.00 20.00 10.00 16.25

• Variant #1 does not measure the representativeness of the
selected set of candidate thumbnails. Thumbnail selection
is based only on the computed scores about the aesthetics
of the visual content of video frames (𝒂 = {𝑎𝑡 }𝑇𝑡=1 in Fig. 2).
The received reward is maximized by simply selecting the
top-k scored frames (in our experiments 𝑘 equals to 1 and 3).

• Variant #2 does not make any estimates about the aesthetics
of the visual content of video frames. The Aesthetics Estima-
tor and the Aesthetics Evaluator of the proposed architecture
(see Fig. 2) are completely missing. Thumbnail selection re-
lies solely on measurements about the representativeness of
the set of candidate thumbnails.

• Variant #3 uses the computed scores about the aesthetics
of the visual content of video frames (𝒂 = {𝑎𝑡 }𝑇𝑡=1 in Fig. 2)
only for computing the set of scores that capture information
about both aesthetics and importance (𝒔 = {𝑠𝑡 }𝑇𝑡=1), that sub-
sequently affect the frame selection process. No information
about the aesthetics is utilized by the Thumbnail Evaluator,
and the overall reward after a training episode (𝑟𝑒 ) equals to
the computed representativeness reward (𝑟𝑏𝑒 ).

• Variant #4 uses the computed scores about the aesthetics
of the visual content of video frames (𝒂 = {𝑎𝑡 }𝑇𝑡=1 in Fig. 2)
only to estimate the overall aesthetics score of the selected
set of candidate thumbnails, and uses this score as a reward
(see the Aesthetics Evaluator component in Fig. 2). No infor-
mation about the aesthetics is utilized by the Frame Picking
Mechanism, and frame selection is affected only by the com-
puted scores about the visual importance of the video frames
(𝒔 = {𝑠𝑡 }𝑇𝑡=1 equals to 𝒊 = {𝑖𝑡 }𝑇𝑡=1).

Based on the results reported in Table 4 we make the following
observations: The developed method is the best performing one
in most considered settings (6 out of 8 in total), and the second
best in the remaining ones (by a very small margin from the best).
Extracting and using information about the aesthetics of the visual
content only as part of the received reward signal, also allows the
Thumbnail Selector to gain good knowledge about the task. The
corresponding variant (Variant #4) is the second best performing
algorithm in most experimental settings. When the aesthetic qual-
ity is not taken under consideration for rewarding the Thumbnail
Selector (Variant #3) or it is completely ignored (Variant #2), the

performance deteriorates in most cases. Finally, when no estimates
are being made with regards to the representativeness of the visual
content and thumbnail selection relies solely on the aesthetics (Vari-
ant #1), the performance is comparable with the performance of
random selection. The above show that measuring both representa-
tiveness and aesthetic quality of the visual content and combining
this knowledge as proposed, leads to the best performance.

5 CONCLUSIONS
In this work we proposed a new approach for video thumbnail
selection. This approach is based on a deep-learning network ar-
chitecture and a training strategy that combines adversarial and
reinforcement learning. The selection is based on assessments with
regards to the representativeness and aesthetic quality of the visual
content of the video frames. The former is estimated with the help
of an adversarially-trained discriminator and the latter is computed
using a pretrained Fully Convolutional Network. An overall score
is formed based on the outcome of these assessments and used as a
reward to train the thumbnail selector based on the principles of
reinforcement learning. Experiments on two benchmark datasets
(OVP and Youtube) showed the advanced performance of the pro-
posed approach against other SoA video thumbnail selection or
summarization methods. Finally, an ablation study signified the
importance of aesthetics for the video thumbnail selection task, and
documented the effectiveness of the proposed approach for select-
ing representative and aesthetically-pleasing video thumbnails.
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