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Abstract
Modern neural language models can be used by malicious actors to automatically produce textual content looking as it has
been written by genuine human users. Due to progress in the controllability of computer-generated text, there is a risk that
state-sponsored actors may start using such methods for conducting large-scale information operations. Various detection
algorithms have been suggested in the research literature to identify texts produced by language model-based generators, but
these are often mainly evaluated on test data from the same distribution as they have been trained on. We evaluate promising
Transformer-based detection algorithms in a large variety of experiments involving both in-distribution and out-of-distribution
test data, as well as evaluation on more realistic in-the-wild data. It is shown that the generalizability of the detectors can be
questioned, especially when applied to short social media posts. Moreover, the best performing (RoBERTa-based) detector
is shown to be non-robust also to basic adversarial attacks, illustrating how easy it is for malicious actors to avoid detection
by the current state-of-the-art detection algorithms.

Keywords Computer-generated text · Detection algorithms · Information operations · Language models

1 Introduction

Progress in the research field of neural language generation
has in recent years resulted in a variety of generative models
able to produce texts of high quality. Current state-of-the-art
generativemodels for text, also referred to as neural language
models, produce textual output that often is so grammatically
correct, fluent, and coherent that it is hard to tell apart from
text written by humans [5,48]. As with many other technolo-
gies, there are several ways in which such models can be
used for malicious purposes. Examples of use cases include
targeted bot attacks [47], fake news generation [43,48], and
fake reviews generation [1].

An even more worrying threat is the potential weaponiza-
tion of such techniques by state actors and state-sponsored
groups [5]. Open societies are already today challenged with
malicious actors deliberately creating and spreading disin-
formation in social media for everything from economical
gain to increasing divide and sowing distrust in the political
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system in democratic countries, using a combination of bots,
sockpuppets, and hijacked accounts [4]. Although it is hard
to estimate the real-world impact of such online information
operations, it is clear that some actors spend a considerable
amount of money to orchestrate the spreading of lies and dis-
information that follows specific narratives of interest [3,13].
Hence, there is more than a hypothetical risk that malicious
actors will attempt to make use of generative models of var-
ious modality, including the high-quality texts generated by
powerful language models such as GPT-2 [35] and Grover
[48]. Potentially, this will lower the existing barriers for state
actors and other malicious users to efficiently produce mis-
information [5] in the social media landscape.

Although there lately has been some reports of language
models used to abuse governmental process [47] and creating
blog posts more or less automatically [24], there has so far
not been any reports of state actors actively using language
models for information operation purposes. One explanation
for this may be that it until recently has been complicated to
control language models to follow a specific narrative, while
at the same time keep producing varied text of high quality.
However, controlling languagemodels has become a popular
research topic, resulting in several new ways to better steer
what is generated by a language model, in addition to previ-
ous coarser methods like fine-tuning and priming. Examples
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of such methods include adding additional metadata to the
training [28,48], and the use of attribute classifiers [12,29]
for guiding the text generation process. As noted by Brown
et al. [5], this may lead to an increased future risk of language
models being misused by, e.g., state-sponsored groups. For
this reason, it is of interest to find out to which degree a
malicious actor can achieve control of the content being gen-
erated using such techniques. Furthermore, it is becoming
increasingly important to investigate to which extent exist-
ing detectionmethods suggested in the research literature can
be used to distinguish between human-generated text and text
being produced using neural language models, especially as
there exists a growing amount of research indicating that
this task is very challenging for humans [1,20,26,48]. Initial
research on the large-scale state-of-the-art neural generative
model GPT-3 even suggests that human abilities to distin-
guish between real texts and texts generated by the largest
GPT-3 models are not better than random guessing [5].

The main contribution of the work presented in this arti-
cle is that we evaluate the performance of promisingmachine
learning-based detection models suggested in the available
research literature on a wide variety of datasets, cover-
ing several types of texts, including news articles, product
reviews, forum posts, and tweets. The texts are generated
using existing language models such as GPT-2 and Grover,
while more fine-grained control of the topic of the gener-
ated texts is achieved using the control mechanisms PPLM
and GeDi. Such control of the generated texts is likely to
be utilized by actors wanting to misuse language models for
information operation purposes. The generalizability of the
detection methods is studied in both in-distribution and out-
of-distribution experiments, as well as on in-the-wild data.
Lastly, the detectors’ robustness toward adversarial attacks
is investigated.

All in all, it is shown that detectors basedonRoBERTa [30]
demonstrate reasonable generalizability to out-of-distribution
data, but that the detectors are not accurate enough for
practical use, other than in constrained scenarios where pre-
trained generative models are likely to be used out of the
box. Furthermore, active countermeasures such as the use
of adversarial attacks can cause the detection algorithms to
perform worse than random guessing. This calls for future
research into more robust detection methods than are avail-
able today.

The rest of this article is structured as follows. In Sect. 2, it
is explained how neural language models work, how they are
trained, and how they can be used by attackers to automati-
cally generate novel text content on a specific topic and with
a specific sentiment. In Sect. 3, various detection algorithms
suggested in the existing research literature for distinguish-
ing between real and computer-generated text are reviewed,
together with related work on bot detection and adversarial
attacks. The actual task definition studied in thiswork is spec-

ified in Sect. 4. Next, the experimental setup is described in
Sect. 5, including datasets used for training or fine-tuning
the detectors, as well as evaluating their performance on
in-distribution, out-of-distribution, and in-the-wild data pro-
duced by various neural language models being controlled
in different ways. The obtained results are presented and
analyzed in Sect. 6, while their potential implications are
discussed in Sect. 7, together with ideas for future work.
Finally, conclusions are presented in Sect. 8.

2 Neural text generation

The idea of text generation methods is not new. For exam-
ple, various n-gram language models have been around for
a long time [34]. Earlier text generation methods usually
relied on extracting and storing statistical frequencies from
large text corpora, and used these to estimate probability dis-
tributions from which new text sequences could be sampled.
However, text produced by such models tends to be ungram-
matical and incoherent [18], and hence, easy for humans to
tell apart from its real human-generated counterpart. Neu-
ral RNN-based language models [40] took a step forward in
terms of quality of the generated text, but the quality reached
another level when large-scale language models based on
the Transformer architecture [44] were introduced. Unlike
RNNs which have to process data sequentially, Transformer
models allow for significantly better parallelization thanks to
their attention mechanism which allows them to selectively
focus on segments of input text they predict to be the most
relevant. Since Transformer-based language models such as
GPT-2 [35] require large quantities of text and compute to
train, much of their popularity has, at least until recently,
been relying on being trained and publicly released by large
companies or research organizations.However, it has become
easier for other actors to both fine-tune and train such mod-
els from scratch due to factors such as release of open-source
code, developments of new hardware accelerators, and new
research on how to fine-tune existing language models to
other languages. Hence, although this is not feasible for the
average user, it is without doubt accomplishable for state
actors under the premise that they can find large enough rep-
resentative datasets for the domain and language for which
they are interested in generating text.

2.1 Languagemodeling

On a high level, neural language models can be described as
being trained to predict the next token (such as a word or a
word-piece) in a text sequence, given the previous tokens.
This is an example of a self-supervised learning task for
which no human-annotated texts are required as training
data. Instead, only large quantities of unstructured and unla-
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beled text are required, where tokens can be masked out
automatically. As a concrete example of a single training
example, the language model can be asked to predict the
next word in the text sequence: “Barack Obama is a former,”
where continuations like “US,” “American,” or “president”
can be expected. More formally, given a corpus of texts
D = {xi }|D|

i=1, where each text xi is composed of a sequence
of tokens (xi1, . . . , x

i
N ), a left-to-right neural language model

Pθ is trained using a language modeling objective to learn
the distribution:

P(x) =
N∏

i=1

P(xi |x<i ). (1)

The chain rule decomposition of Eq. 1 follows from how the
texts are generated in an autoregressive manner. The param-
eters θ of the language model Pθ are obtained by optimizing
the language modeling loss function:

L = −
∑

x∈D
log Pθ (xi |x<i ). (2)

Once a neural language model has been trained, it can be
used to estimate the probability of a text sequence, but also
to generate new text.

2.2 Generating text

A trained neural language model can be used to create text
conditioned on some input, such as the beginning of a sen-
tence, or just an empty start token in the case of unconstrained
text generation. New texts can then be generated by sam-
pling tokens repeatedly from the conditional distribution
Pθ (xi |x<i ) until an end token is generated or other stop-
ping criteria are fulfilled, such as a pre-specified maximum
sequence length being reached. Although, in theory, it is pos-
sible to simply greedily select the most probable token at
each step, this leads to repetitive and highly non-varied text
[25]. Hence, some kind of non-deterministic sampling strat-
egy is needed. One such strategy could be to let each token
have a chance of being generated that is directly proportional
to its estimated probability, as expressed by the language
model. However, this tends to lead to texts that significantly
deviate from human-generated text, as the probability distri-
bution often contains a long tail of tokens that individually
are assigned low probabilities, but which cumulatively are
assigned a high probability mass [27]. It is therefore more
common in practice to sample from a truncated part of the
probability distribution. One common strategy is top-k sam-
pling [17], where the probability distribution is reassigned to
only include the k most probable tokens. Nucleus sampling
[25] is a dynamic version of top-k sampling that dynami-
cally truncates the distribution to the smallest set of tokens

<|begintitle|>Bots are Flooding the Internet With
Fake Reviews<|endoftitle|><|begindomain|>New
York Times<|endofdomain|<|beginauthor|>John
Smith<|endofauthor|><|begindate|>09-08-2018<|endofdate|>
<|beginarticle|>There are worrying reports of bots...

Fig. 1 An example of how Grover is conditioned on article fields
in order to generate a news article. The desired characteristics of the
text, e.g., the chosen title, is added as an initial string that Grover will
be conditioned on. The generation begins after the < |beginarticle| >

token

with a total probabilitymass reaching above a fixed threshold
p ∈ [0, 1].

2.2.1 GPT-2

GPT-2 [35] is a Transformer-based languagemodel trained to
predict the next token in a sequence as described in Sect. 2.1.
It has originally been trained on a dataset (WebText) contain-
ing 40 GB of text scraped from the internet. The relatively
large training data size and its powerful architecture makes
it capable of generating diverse coherent text in a multitude
of domains. GPT-2 can easily be adapted to generate text
in more restrictive domains (e.g., reviews and social media
comments) with additional fine-tuning on datasets several
orders of magnitude smaller than the WebText dataset.

2.2.2 GROVER

Grover [48] is a language model with the same architecture
as GPT-2. However, it has been trained on the RealNews
dataset, containing articles from a broad range of news
domains. Unlike GPT-2, it is trained to generate texts con-
ditioned on a headline, date, author , and domain, adding
the possibility of steering the generated text more closely
toward a desired style and topic. When generating an arti-
cle, the text is initialized with the desired article attributes
enclosed in their corresponding start and end tokens as illus-
trated in Fig. 1, whereafter the rest of the text is generated
auto-regressively as described in Sect. 2.2. There are three
different model sizes of Grover, ranging from a 117M
parameter (Base)model to the largest 1.5B parameter (Mega)
model.

2.3 Controllable text generation

Although the output of neural language models can be con-
trolled to some degree by conditioning (probing) them on
an input sequence or fine-tuning them on a more domain-
specific dataset, this level of control is in general not enough
for amalicious actor whowants to utilize it within the context
of information operations. Instead, there are more sophisti-
cated ways in which the generated text can be controlled.
One way is to incorporate metadata in the form of control
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tokens as additional information during the training, so that
these later on can be utilized for finer-level control during
text generation. Examples of this kind of class-conditional
language models are Grover [48] and CTRL [28]. Another,
more flexible, way to achieve control over what is being gen-
erated is to make use of attribute classifiers. An early variant
of this was suggested by Adelani et al. [1]. In their approach,
texts generated by a language model were used as input to
a separate discriminator model to ensure that all texts with
an unwanted sentiment could be discarded. While such a
filtering mechanism is not impacting the actual text genera-
tion (and thereby may require generating large amounts of
texts before producing a text that is in line with what its user
wants), more modern approaches incorporate the attribute
classifier into the generation process, so that the text gen-
eration can be more directly guided. Examples of methods
that use such attribute classifiers are Plug and Play Language
Models (PPLM) [12] and generative discriminator-guided
sequence generators (GeDi) [29].

2.3.1 PPLM

PPLM relies on an external attribute model in addition to a
pre-trained neural language model in order to generate text
with a desired characteristic. The attribute model is typically
implemented as a standard text classifier. This makes it sev-
eral orders of magnitude smaller than the original language
model, but still allow for effective steering of the output [12].
This is achieved by sampling text using the language model
and feeding the generated text into the attribute model. This
results in a probability of the text to be of the correct class,
according to the attribute model. Gradients from the attribute
model are utilized in a backward pass that updates the inter-
nal latent representations so that a new distribution over the
vocabulary can be generated from the updated latent. This
process is repeated at every generation step, leading to a
gradual transition of the generated text toward the desired
attribute.

2.3.2 GeDi

GeDi uses generative discriminators to, with the help of a
control code, guide (larger) language models toward gener-
ating text with a desired attribute, or alternatively, away from
generating text with undesired attributes. GeDi drastically
reduces the required computation time per generated sample
compared to PPLM [29] (as it unlike PPLM does not require
performing multiple forward passes per generation step), but
on the other hand is more computationally expensive and dif-
ficult to train since it requires training a separate (but smaller)
languagemodel usinghybrid generative-discriminative train-
ing. In essence, GeDi guides the text generation process
by at each step efficiently compute classification proba-

bilities for all possible next tokens at once using Bayes
rule. This is accomplished by normalizing over two class-
conditional distributions, where the first is conditioned on the
desired attribute (e.g., positive sentiment) and the other on
the undesired attribute (e.g., negative sentiment). The com-
puted likelihoods can then efficiently guide the generation of
text from the original (large) language model using various
heuristics.

3 Detectionmodels

Detection of text being generated by language models has
received increasing attention [1,20,43,48] since the advent
of large-scale language models such as GPT-2. However,
compared to detection of images [11,31,45,46] and videos
[2,7,32] being synthesized or manipulated using generative
models, its text counterpart is under-researched.

Among the suggested approaches for predicting whether
a text sequence has been machine generated or not, different
classes of methods can be identified. Some of these make
direct use of the probability distribution expressed by neural
language models, while others rely on machine learning-
based classifiers trained using supervised learning. Within
the first class of methods, the total probability method intro-
duced by Solaiman et al. [39] is a representative example.
It simply computes the total probability of the text sequence
of interest, based on a pre-trained GPT-2 language model.
If the computed probability is closer to the mean likelihood
over a set of known machine-generated sequences than the
corresponding mean likelihood over a set of human-written
texts, the text sequence is classified as machine generated.
This idea can easily be expanded upon to also incorporate
other pre-trained language models.

A related detection method is GLTR [20]. GLTR relies
on that text generation methods tend to sample from a trun-
cated head of the full probability distribution. In addition to
calculate the probability of each word in the text sequence
of interest according to a pre-trained language model, it also
computes its absolute rank of the word. After binning the
ranks into a smaller number of buckets, the text can be over-
layed with colors corresponding to the chosen buckets. In
this way, a human can more easily spot if probable words are
being overrepresented in the text sequence. Averages over
the calculated values can also be used as input features to
shallow classifiers, which has been tested with limited suc-
cess [26]. Other detectors based on shallow classifiers have
also been proposed, such as a baseline logistic regression
model representing texts using TF-IDF features on unigram
and bigram level [39].

Together with the public release of the largest GPT-2
model (consisting of 1.5B parameters), OpenAI released a
sequence classifier based on a pre-trained RoBERTa [30]
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model, fine-tuned to distinguish between texts being gener-
ated from the GPT-2 model and real texts [39]. The detector
was trained on 250,000 samples from the WebText dataset
[35] and an equal amount of texts synthesized with GPT-2
using a mixture of sampling methods.

In a similar vein, Zellers et al. [48] have proposed adding
a linear classification layer on top of their powerful Grover
language model. They argue that the capability of Grover
to generate text also makes it a strong detector. Their largest
Grover-Mega detector has been trained on an equal amount
of human-written articles and articles generated byGrover-
Mega, using top-p = 0.94. In their experimental results, it
is shown to outperform other detectors (including a detector
based on BERT [15]), although later work [43] questions the
generalizability of using Grover as a detector when other
potential generators are taken into consideration.

Although there is a growing amount of research on detec-
tion of text being generated by language models, there is still
a lack of understanding of which detection models that per-
form the best, especially when they have to generalize to data
from other distributions than being trained on. In a real-world
scenario, a sophisticated attacker is unlikely to generate text
straight from a publicly available language model on which
a detection model can be trained. Instead, it can be expected
that such language models are retrained on other types of
(non-public) text data before use, and that some kind of con-
trolled text generation method is used to steer the content
of the text being generated. The use of alternative sampling
mechanisms, or even adversarial attacks aimed at confusing
specific detection models, can also cause the generated text
to deviate significantly from what a public language model
would generate using the default settings. Hence, there still
exists many research questions to address within this area of
research.

Although the focus in this article is on detection of
computer-generated text, it is highly related to themore well-
researched problem of bot detection. Bot detection has been
an active field of research for more than a decade [9], i.e.,
much longer than there have been widespread discussions on
the impact of social bots on polarization and spread of dis-
information [37]. Early machine learning-based approaches
to detecting automation of social media accounts were often
based on relatively simple measurements related to posting
behavior, posted content, and account properties of individ-
ual accounts [6], but such approaches are not working as
well today, due to newer generations of bots that are often
far more sophisticated than previous generations [10]. As
demonstrated in [42], bot detection systems are often not
robust enough to generalize to social bot scenarios that are
not part of the training data. Moreover, the false positive and
false negative rates of such systems on real-world data can
be questioned [36]. Graph-based approaches that take coor-
dination and synchronization among groups of accounts into

consideration when classifying the accounts are therefore
becoming increasingly popular [9]. For coming generations
of social bots, it is more than likely that controllable text gen-
eration using language models will be utilized for generating
the textual content, making the bot detection problem even
more challenging than it already is today.

Both bot detection and detection of computer-generated
text can be seen as an arms race where improved detec-
tors may cause increasingly sophisticated attack strategies
designed for bypassing the defense. For this reason, it
becomes relevant to study the developed machine learning-
based detection methods’ robustness against adversarial
attacks, i.e., slight modifications of the input designed to be
difficult for the machine learning-based models to classify
accurately [22]. To the best of our knowledge, adversarial
attacks have not previously been studied in the context of
detection of languagemodel-generated text, but the relatively
immature research field of adversarial examples is quickly
evolving. In white-box attacks in which an attacker has per-
fect knowledge of the classificationmodel used for detection,
it is inmany cases a rather straightforward optimization prob-
lem tomodify input in away such that aminimal perturbation
causes the input to bemisclassified by themodel, e.g., chang-
ing a few pixels in an input image. This can, for example, be
accomplished using gradient-based search algorithms such
as FGSM [23] or L-BFGS [41]. In black-box scenarios, in
which the used detection model is unknown to the attacker,
it becomes more challenging to carry out adversarial attacks.
However, it has been demonstrated that adversarial examples
transfer surprisinglywell [41], so that an attack optimized for
a substitute model to which the adversary has access is likely
to misclassified also by the target detection model unavail-
able to the attacker. Suggested defenses against adversarial
attacks include adversarial training [23,41] and defensive dis-
tillation [33], but these defenses may often be broken using
black box-attacks or more expensive iterative optimization
attacks [22].

For textual input, adversarial attacks are less studied. Such
attacks are somewhat different as they have to be carried out
on the level of individual characters or words rather than on
the level of pixels. While a slight change of the intensity
level of a single pixel rarely changes the overall content of
an image, adding or changing a single token in a sentence
may change its meaning completely. Despite this, various
attacks for NLP applications are continuing to emerge in
the research literature [49], which emphasizes the need to
also evaluate the robustness against adversarial attacks for
machine learned-based models aimed at detecting text being
generated by language models.
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4 Task definition

We assess the performance of promising machine learning-
based detection algorithms suggested in the research litera-
ture for distinguishing between real and machine-generated
texts with respect to:

1. their ability to generalize to different domains, genera-
tors, and control mechanisms, and

2. the extent to which they are robust against adversarial
attacks.

The generalizability aspect is important since it in practice
is most likely that an adversary who generates text in an
information operations context will do this using a method
that generates data deviating from what the detection model
has been trained on originally. This can, e.g., be a result of
the attacker using a new or fine-tuned language model, an
alternative sampling strategy, or by steering the generated
text toward a specific narrative of interest.

The robustness aspect becomes relevant in situations
where the attacker knows that a defender may use machine
learning-based detection models to automatically identify
use of machine-generated text. If there are publicly available
detection models, the attacker may design adversarial exam-
ples specifically targeted for being misclassified by these
models. If the defender instead uses a non-public detection
model, black-box attacks may still be a valid threat. For these
reasons, it is of interest to evaluate both the generalizabil-
ity and robustness of the detectors. The performance of the
detectors is evaluated on a binary classification task, i.e., pre-
dictingwhether individual texts havebeenmachinegenerated
or not.

5 Experimental setup

In this section, the experimental setup used to investigate
the generalizability and robustness of promising detectors
is described. When evaluating the performance of such
detectors, representative data become highly important. Sec-
tion 5.1 describes the datasets used for evaluation of the
models, while Sect. 5.2 presents the actual detection mod-
els that have been tested on this data. Section 5.3 describes
themethodology for investigating the detectionmodels’ gen-
eralizability, while Sect. 5.4 describes how the robustness
has been evaluated using white-box and black-box adver-
sarial text attacks. In the experiments, machine-generated
text is treated as the positive class. The performance is
measured in terms of accuracy, precision, recall, and F1-
score. A high-level overview of the conducted experiments
is given in Fig. 2. Details on the hyperparameters used for

Fig. 2 An illustration of the conducted experiments. The robustness of
the detection models is evaluated using four different groups of datasets
with increasing levels of difficulty. The evaluation begins with texts
generated with nucleus sampling, continuing with out-of-distribution
texts and in-the-wild datasets generatedwith novelmodels and sampling
strategies. Finally, the models are evaluated on the most challenging
dataset of adversarial examples that have been optimized to fool the
detectors

each generation strategy are described in further detail in
“Appendix A.2.”

5.1 Generators and datasets

The experiments have been conducted on two very different
types of textual domains: news articles and socialmedia texts.
On afiner scale, the socialmedia texts that have been included
in this research can be divided into tweets, Reddit comments,
Yahoo answers, and Yelp user reviews. For each domain of
interest, representative datasets have been required, covering
both real human-written texts and languagemodel-generated
texts. Further details about these datasets and their generator
models are presented below and summarized in Table 1.

5.1.1 News articles

For news articles, it is well known that Grover language
models are able to produce highly realistic articles. For
this reason, two Grover models of different size have
been included as language models used to create machine-
generated news articles, while data instances from theReal-
News dataset [48] (originally used for training Grover)
have been utilized as real texts. AsGrover allows for condi-
tioning on metadata relating to headline, domain, author ,
and date, this information was extracted from genuine news
articles, sampled randomly from theRealNews dataset [48].
The generated text was thereafter sampled auto-regressively
from the generator, conditioned on the sampled metadata.
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Table 1 Generator models used
to synthesize the different texts

Model #Params Pre-training data Fine-tuning data

Grover-Base 117M RealNews

Grover-Mega 1.5B RealNews

GPT-2 Go Emotions 345M WebText GoEmotions

GPT-2 Sentiment140 345M WebText Sentiment140

GPT-2 Yahoo Answers 345M WebText Yahoo Answers

GPT-2 Yelp Polarity 345M WebText Yelp Polarity

5.1.2 Social media texts

TheGPT-2 languagemodel has (unlikeGrover) partly been
pre-trained on socialmedia data, and is therefore better suited
for generating such data. We fine-tune four separate genera-
tive models, all based on a pre-trained medium-size version
of GPT-2. The fine-tuning was performed on the following
social media datasets, from which we also have extracted the
real social media texts:

– Sentiment140 [21]: A dataset of Twitter posts originally
created for sentiment analysis. Fine-tuning was carried
out for one epoch on all of the 1,599,502 texts belonging
to the training split of the dataset.

– GoEmotions [14]: A dataset containing Reddit com-
ments, originally used for fine-grained emotion classi-
fication. All of the 43,410 comments in the training split
were used for fine-tuning theGPT-2model for ten epochs.

– Yahoo! Answers (nfL6) [8]: A dataset of 87,362 ques-
tions and their corresponding answers. The first 82,363
answers of the datasetwere used to fine-tune a pre-trained
GPT-2model for ten epochs. None of the questions in the
dataset were used.

– Yelp Polarity Reviews [50]: A dataset containing an
equal number of positive and negative Yelp reviews. The
GPT-2 model was fine-tuned for one epoch on the train-
ing split containing 560,000 reviews.

The texts from each dataset that were not used for training the
generators were later utilized as real texts when evaluating
the various detectors. Each dataset has been obtained from
Huggingface Datasets.1

5.1.3 Controlled text generation

While the data described so far cover the different domains
and generators used in the experiments, some further com-
plexity ariseswhen taking the controllability into account. As
explained earlier, an attacker may want to be able to control
the content of what is being generated, which potentially can

1 https://github.com/huggingface/datasets.

have an impact on the detectors’ performance. In addition to
unconditioned text generation (and conditioning on sampled
metadata for the Grover generator) as described above, we
have also controlled a subset of the generated news articles
and social media texts on a more fine-grained level using
PPLM and GeDi.

For PPLM, two different attribute models were used. For
the first attributemodel, a simple bag-of-words (BoW)model
was utilized. A list of military-related terms2 was used to
represent a military topic. According to this straightforward
model, the likelihood of a text containing a military topic is
given by the sum of likelihoods of each word in the bag. As
the second (slightly more complex) attribute model, a sin-
gle linear layer was trained on top of the last hidden state
of each generator model on the task of classifying sentiment
(based on data from the Stanford Sentiment Treebank [38]).
Once trained, gradients from the attribute models were used
to steer the generated texts to be (1) positive or negative,
or (2) military-related, respectively, while simultaneously
taking gradient steps in the direction of high likelihood as
expressed by the underlying text generation model.

For GeDi, the generated text was also steered toward a
specific sentiment (negative) or topic (food). For this pur-
pose, pre-trained generative discriminators3 were utilized.
The parameters used for steering the generation using PPLM
and GeDi are found in “Appendix A.2.”

5.2 Detectionmodels

Althoughmany different types of detectionmodels have been
suggested in the research literature for the task of discriminat-
ing between real and machine-generated texts (as described
inmore detail in Sect. 3), we have in the experiments reported
here focused onTransformer-based detectionmodels as these
have shown most promising results in previous research. In
our conducted experiments, only pre-trained detectors which
are publicly available have been included. The external detec-
tors are interesting as they are available out of the box,making
them reasonably easy to use for various types of actors (such

2 https://github.com/uber-research/PPLM/blob/master/paper_code/
wordlists/military.txt.
3 https://github.com/salesforce/GeDi.
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Table 2 A list of the detection models used in the experiments

Model Alias #Params

Grover-Mega Grover 1.5B

OpenAI RoBERTa-Base OpenAI-B 125M

OpenAI RoBERTa-Large OpenAI-L 355M

OpenAI RoBERTa-Large Fine-tuned OpenAI-L-F 355M

Table 3 Data used for
fine-tuning and validating the
RoBERTa model

Dataset #Texts

Grover-Base 10k

Grover-Mega 10k

Sentiment140 10k

GoEmotions 10k

Each dataset is balanced with an
equal number of human texts as
machine generated texts

as social media platforms) attempting to detect online infor-
mation operations. As shown in Table 2, we have included
several versions of pre-trained Transformer-based detection
models from OpenAI, based on the RoBERTa architecture.
The difference between the OpenAI RoBERTa-Base and
OpenAI RoBERTa-Large models is within the number of
parameters; the Large model is simply a deeper network,
consisting of more Transformer layers than the Base model.
Both models have been fine-tuned on the task of detecting
generated text from the same dataset. We have also included
a largeGrover-Mega model, in which a linear classification
layer has been trained on top of theGrover language model
as described in Sect. 3.

While the pre-trained detection models have already been
trained on a mix of real and machine-generated text, they are
not necessarily covering the same domain as they are applied
to in the experiments. Althoughwe dowant detectionmodels
that generalize to data they have not been trained on, it may
be too much of a challenge for a detection model that has
only been trained on well-written news articles to generalize
to shorter and less formal social media posts. For this reason,
we have additionally included an OpenAI RoBERTa-Large
model that has been further fine-tuned for half an epoch on
the training data listed in Table 3, in order to get a better
sense of the importance of domain-specific training exam-
ples when generalizing to previously unseen domains. The
data contain amix of real andmachine-generated texts,where
the latter spans from news articles to tweets and Reddit com-
ments. Fifty percent of the generated texts were created using
Grover and the rest byGPT-2.We used 70%of the text sam-
ples for fine-tuning and 10% for validation. The remaining
20%were used as test data during evaluation.Weused a batch
size of 128 and a learning rate of 5× 10−5 when fine-tuning
the RoBERTa model.

5.3 Evaluating generalizability

In order to evaluate the generalizability of the various detec-
tors, they have been tested in experiments of increasing
difficulty. First of all, the detectors were tested on test data
held out from the dataset already described in Table 3. These
texts have been generated with similar sampling strategies
and languagemodels as the texts used for training the detector
models. The fine-tuned RoBERTa model has the advantage
of being trained on data from the same domain, while this is
not the case for the other detection models.

Next, the detectors were tested in more challenging out-
of-distribution evaluations focusing on the impact of fine-
grained control mechanisms such as PPLM and GeDi on
the detectors’ accuracy. Hence, this experiment simulated
a scenario in which an attacker attempts to steer the text
generation in a certain direction, such as following a specific
narrative. Texts synthesized with PPLM and GeDi were not
present in any of the detectors’ training data, which simulates
amore realistic scenariowhere a defender cannot be assumed
to have knowledge of the techniques used by the attacker.

Finally, we also wanted to get an idea of how well the
detectors generalize to in-the-wild data, possibly originating
from completely other types of generators than the detectors
have been trained on. For this reason, a number of additional
datasets have been experimented with to test the detectors’
in-the-wild detection capabilities:

– TweepFake dataset [16]: TweepFake (Twitter Deep
Fake Dataset) is a dataset consisting of a mix of tweets
written by 23 genuine Twitter accounts and equally many
bot accounts automatically posting impostor tweets using
various language models. The tweets synthesized by bots
were generated with language models such as GPT-2,
RNNs, and LSTMs. In total, the dataset contains 25,836
tweets with an equal number of human and bot tweets.

– Deepfake bot submissions dataset [47]: A dataset
consisting of 795 human-written comments and 1,001
comments generated with the 124M version of GPT-2,
fine-tuned on real comments submitted to a federal public
comment website for Medicaid Reform Waiver. We use
the 795 human-written comments and an equal amount
of the generated comments in our evaluations.

– MixedNLGdataset [43]: A comprehensive dataset with
texts synthesized with eight different Transformer-based
languagemodels, as well as texts written by humans. The
dataset contains 1066 texts from each of the models, in
addition to equally many human-written texts.

– GPT-3 dataset [5]: A dataset containing samples gener-
ated with the full 175B version of GPT-3, the state-of-
the-art successor of GPT-2.4 We split the GPT-3 samples

4 The dataset was downloaded from https://github.com/openai/gpt-3/.
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Table 4 All of the (balanced) test datasets used to evaluate the detectors

Dataset #Texts Mean length

Grover-Base 2k 575

Grover-Mega 2k 571

Sentiment140 2k 21

GoEmotions 2k 17

Yelp Polarity 10k 173

Yahoo Answers 10k 51

GeDi

GoEmotions Food 2k 21

GoEmotions Neg 2k 22

Sentiment140 Food 2k 29

Sentiment140 Neg 2k 37

Yahoo Answers Food 6k 76

Yahoo Answers Neg 6k 47

Yelp Polarity Neg 6k 169

PPLM

Grover-Base BoW 2k 588

Grover-Base Neg 2k 603

Grover-Base Pos 2k 586

Grover-Mega BoW 2k 560

GoEmotions BoW 2k 18

Sentiment140 BoW 2k 26

In-the-wild datasets

DeepFake Bot 1.6k 43

TweepFake 25.8k 31

GPT-3 4k 530

Grover 2.1k 614

CTRL 2.1k 637

GPT 2.1k 465

GPT-2 2.1k 493

XLM 2.1k 505

XLNet 2.1k 511

FAIR 2.1k 500

PPLM 2.1k 506

The mean length column shows the mean token count using the
RoBERTa tokenizer for the posts in each of the datasets

each time an end-of-text token appears, resulting in a total
of 2008 texts. Equally many real texts have been taken
from the WebText dataset.

Information about all the test datasets used to evaluate the
detectors’ ability to generalize is summarized in Table 4.

5.4 Evaluating robustness to adversarial attacks

In the last experiments, the robustness of the detector mod-
els to adversarial examples was evaluated using perturbed

inputs explicitly designed to cause misclassifications. First,
a subset of the generated texts were post-processed with
the DeepWordBug [19] adversarial attack algorithm, with
the goal of making the detectors misclassifying them as
human written. Human-written texts were not attacked as
it is unlikely that an attacker would be interested in carry-
ing out an attack in that direction. The adversarial attack
algorithm ranks each token of the input according to its
individual contribution to the classification score. Subse-
quently, the algorithm perturbs the most influential tokens
with one of four character-level transformations: adjacent
character swapping, character substitution, character dele-
tion, and character insertion. The attacks were restricted such
that a Levenshtein edit distance of no more than 30 was
allowed between the adversarial example and the original
text. In the first robustness experiment, a white-box attack
was carried out against the large OpenAI RoBERTa model.
In a second experiment, it was investigated how well this
attack transfers to the other RoBERTa models in a black-box
setting.

6 Results

In this section, the experimental results are presented. The
detection models’ generalizability is evaluated in Sect. 6.1,
while the robustness results resulting from the straight-
forward white-box and black-box adversarial attacks are
presented in Sect. 6.2.

6.1 Generalizability results

When presenting the detection models’ achieved perfor-
mance (evaluated onwell-balanced test data) the experiments
have been grouped into in-distribution, out-of-distribution, or
in-the-wild. In addition to the calculated accuracies, detec-
tion results in terms of precision, recall, and F1 scores can
be found in “Appendix B.” The best result achieved for each
dataset is marked in bold font.

6.1.1 In-distribution detection

Table 5 shows the performance of the detector models on the
test data generated with the models in Table 1 using nucleus
sampling.

Across all of the evaluated detection models, irrespec-
tively of whether they have been fine-tuned on data from this
particular domain or not, news articles seem to be relatively
easy to detect, especially for texts generated with the smaller
Grovermodel. Given the relatively large text length of news
articles, this is of no surprise. However, despite their length,
articles from theGrover-Megagenerator still remain a prob-
lem to distinguish from real articles for most of the detectors,

123



372 International Journal of Data Science and Analytics (2022) 13:363–383

Table 5 Detection accuracy (%)
on the in-distribution datasets

#Texts Accuracy

GROVER OpenAI-B OpenAI-L OpenAI-L-F

Grover-Base 2k 94.65 98.55 99.55 97.30

Grover-Mega 2k 86.99 83.68 90.89 95.25

GoEmotions 2k 54.96 61.26 69.27 70.02

Sentiment140 2k 54.02 65.32 66.57 82.23

Yelp Polarity 10k 68.38 82.41 91.69 90.52

Yahoo Answers 10k 59.33 73.36 81.04 82.42

even though the fine-tuned OpenAI detector succeeded to
reach an accuracy of 95.25%.

All of the shorter social media texts apart from the ones
from the Yelp Polarity dataset were undoubtedly more dif-
ficult to detect across all of the models. The OpenAI-Large
model reached an accuracy of 66.57% and 69.27% for texts
from the Sentiment140 and GoEmotions datasets, respec-
tively, with the fine-tuned OpenAI-Large model achieving
better accuracies, especially for the Sentiment140 dataset.
Notably, the 1.5B parameter Grover-Mega discriminator
trained solely on news articles performed just slightly better
than random chance.

All in all, these results suggest that current state-of-the-
art detectors do not seem to reliably distinguish between real
andmachine-generated socialmedia posts, not even if having
having access to training data from a similar distribution.

6.1.2 Out-of-distribution detection

In the second experiment, the impact of controlling the text
output using PPLM and GeDi was studied. The results are
presented in Table 6.

For PPLM, there does not seem to be a notable impact on
the detection performance, especially for the best perform-
ing RoBERTa models. However, this is not the case for texts
generated with GeDi, which in general seems to be harder to
detect. The impact is especially noticeable when using GeDi
to generate texts with a negative sentiment. Probably, this
is due to the GeDi model being a more sophisticated con-
trol model than PPLM, thereby being able to steer the text
toward a specific topicwithout compromising the humanness
of the texts as much as PPLM. This hypothesis is strength-
ened when looking manually at samples of the generated
texts, as discussed in more detail in Sect. 7.

Interestingly, the OpenAI-Large detector fine-tuned on,
e.g., the Sentiment140 andGoEmotions datasets consistently
performed worse than the same detector without fine-tuning
when applied to the corresponding data being controlled
by GeDi. This suggests that texts generated with GeDi
experience a noteworthy distribution shift, compared to the
corresponding texts being generated solelywith nucleus sam-
pling.

6.1.3 In-the-wild detection

In the last experiment on detection generalizability, the
detectors were evaluated on the in-the-wild datasets, which
arguably give a better indication of how the trained detectors
are able to generalize to other generators and text generation
methods than they have been trained on. The obtained results
are presented in Table 7.

Texts generated with the relatively simple GPT gener-
ator were surprisingly hard to detect across all detection
models,more so than the texts from the 175Bparameter state-
of-the-art GPT-3 generator. Likewise, generations from the
cross-lingual XLMmodel and the XLNet were equally diffi-
cult to detect. However, after manual inspection of the texts
from especially the two latter models, we found the texts to
be of such a poor quality that they would not be especially
useful for an attacker attempting to use language models for
conducting information operations. Therefore, these detec-
tion accuracies are of limited practical interest.

The fine-tuned OpenAI-Large model did not generalize
particularly well to tweets from the TweepFake dataset, even
though it was trained on data that included real and generated
tweets. Notably, the OpenAI-Large model that was not fine-
tuned on Sentiment140 performed better at detecting fake
tweets from the TweepFake dataset than the fine-tuned ver-
sion. Although it is a reasonable result given that the tweet
datasets contain texts synthesized with different models, it
shows how brittle the detectors are to model variations.

6.2 Robustness results

Asa robustness test, the synthesizedYahooAnswers andYelp
Polarity texts were post-processed using the DeepWordBug
algorithm mentioned in Sect. 5.4. Both attacks were per-
formed on the OpenAI-Large detector as it overall was the
best performing detector in terms of generalizability. Table 8
summarizes the results from the conducted attacks. An exam-
ple of one of the generated adversarial examples is shown in
Fig. 3.

Clearly, the attacks were effective, causing a majority of
the synthesized texts to be classified as human-generated.
However, these attacks require that the attacker has access
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Table 6 Detection accuracy (%)
on the texts generated with
PPLM and GeDi

#Texts Accuracy

GROVER OpenAI-B OpenAI-L OpenAI-L-F

PPLM

Grover-Base BoW 2k 94.55 98.90 99.75 97.25

Grover-Base Pos 2k 94.15 98.75 99.65 97.30

Grover-Base Neg 2k 93.25 98.65 99.65 97.25

Grover-Mega BoW 2k 85.95 85.70 93.95 95.75

GoEmotions BoW 2k 50.40 58.56 69.37 64.16

Sentiment140 BoW 2k 48.54 67.32 72.72 79.83

GeDi

GoEmotions Food 2k 51.00 54.91 65.22 64.87

GoEmotions Neg 2k 53.05 51.90 58.46 57.86

Sentiment140 Food 2k 51.50 60.61 71.97 68.67

Sentiment140 Neg 2k 53.30 63.46 73.67 66.97

Yahoo Answers Food 6k 50.85 65.40 79.87 77.83

Yahoo Answers Neg 6k 58.10 66.38 73.12 71.87

Yelp Polarity Neg 6k 50.75 76.67 87.10 78.73

Table 7 Detection accuracy (%)
on the in-the-wild datasets

#Texts Accuracy

GROVER OpenAI-B OpenAI-L OpenAI-L-F

DeepFake Bot 1.6k 72.77 70.82 68.37 71.45

TweepFake 25.8k 54.77 69.05 77.55 67.79

GPT-3 4k 67.06 78.29 72.11 81.50

Mixed NLG dataset

Grover 2.1k 94.47 87.90 99.25 99.48

CTRL 2.1k 73.45 55.96 81.00 85.88

GPT 2.1k 52.63 51.27 61.26 72.51

GPT-2 2.1k 92.92 91.84 95.08 98.87

XLM 2.1k 47.23 73.92 60.27 59.94

XLNet 2.1k 48.08 68.25 78.47 68.81

FAIR 2.1k 91.60 76.92 95.50 99.11

PPLM 2.1k 94.37 88.18 98.12 99.53

Table 8 Attack results when perturbing 1000 generated texts of the
Yahoo Answers and Yelp Polarity datasets, respectively

Yahoo answers Yelp polarity

Successful attacks 675 805

Failed attacks 4 69

Skipped attacks 321 126

Original accuracy 67.9% 87.4%

Accuracy under attack 0.4% 6.9%

Average perturbed word % 5.57% 4.33%

Average num queries 57.11 221.21

Skipped attacks occur when the model misclassifies the text without
requiring any perturbations. Failed attacks occur when the attack algo-
rithm fails to alter the classification with the allowed perturbations

Fig. 3 An adversarial example and the original text from the Yelp
Review dataset. The three edited words cause the OpenAI-Large model
to incorrectly change its classification of the text to human-generated
from machine generated
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Table 9 Accuracy on the datasets of adversarial examples generated
for the OpenAI-Large model

Accuracy (%) Original/adversarial

OpenAI-B OpenAI-L-F

Yahoo answers 64.8/32.2 77.1/29.9

Yelp polarity 74.3/24.0 90.4/48.7

The table also shows the accuracies on the datasets in their original form

to the detection model. This may well be the case for pub-
licly available detectors, but not for non-public detectors
trained on private datasets. Therefore, to further test the
effectiveness of the adversarial examples we also consid-
ered an alternative scenario in which the attacker was not
given access to the detector itself, but only partial infor-
mation about its model architecture. Hence, some of the
other RoBERTa-based detector models were evaluated on
the adversarial examples optimized forOpenAI-Large, inves-
tigating to which extent the adversarial examples transfer
between the models. The results of the transferability exper-
iment are shown in Table 9.

Interestingly, the adversarial examples remained adver-
sarial to a large extent across the detection models, causing
a severe decrease in the detection accuracies. A model that
cannot be accessed and queried by the attacker is therefore
not necessarily safe, as the attacker can use the adversarial
examples computed for a surrogatemodel trained on the same
task as the target model. This is crucial to have in mind when
considering fine-tuning a publicly available detection model
on a domain-specific detection task. As the fine-tuned model
shares the same architecture andmany features with the orig-
inal model, it is likely to be brittle to the same adversarial
examples that fool the original detector.

7 Discussion

Given the experimental results, it is quite clear that among
the evaluated detection methods, the detectors based on a
RoBERTa architecture are in general performing better than
a Grover-based detector on detection tasks involving data
from other distributions than they have been trained on. This
is in line with results from Uchendu et al. [43], suggesting
that a pre-trained Grover detector does not perform well on
textual data generated using other language models than the
Grover generator.

Somewhat surprising, it does not seem to consistently help
to fine-tune the off-the-shelf OpenAI RoBERTa detector on
more representative data for the actual detection task. Most
likely, this is due to the used experimental setup. In the exper-
iments, we fine-tune on a number of data sources at once,
rather than on a single data source. We aimed at investigat-

Fig. 4 Detection accuracy of the fine-tuned OpenAI-Large model on
generated tweets of the Sentiment140 dataset with respect to the number
of tweets used in each prediction

ing how to build generalizable detectors, rather than to reach
state-of-the-art performance on single datasets. When aim-
ing for the latter, it is probably a better approach to pre-train a
large-scale RoBERTa detector on a large and varied dataset,
and then use this detector as a base when fine-tuning indi-
vidual detectors for each domain of interest based on this
pre-trained detector.

As has been shown, almost all the evaluated detectors per-
form worse on social media posts than on news articles. This
is a problem, as we have identified the social media domain
as being of high importance from an information operation
perspective. For this reason, it is of practical importance to
be able to increase the detection performance, especially for
short posts such as tweets. In initial follow-up experiments,
we have found that it is possible to increase detection accu-
racy by concatenating several posts from the same source.
This is especially useful when considering classifying social
media posts, as such posts can be obtained and concatenated
on a user level. As an example, we can increase the detec-
tion accuracy for the fine-tuned OpenAI RoBERTa detection
model on the Sentiment140 dataset from 82.2 to 98.9%, sim-
ply by classifying concatenations of ten tweets rather than
individual tweets, as illustrated in Fig. 4. This is a promising
strategy given the low number of tweets needed to reach an
accuracy of this magnitude. Nonetheless, it is only feasible
under the assumption that the accounts are not posting a mix
of human-written and machine-generated text.

7.1 Quality of the generated texts

Although contemporary language models can generate texts
with unprecedented quality, there is still a risk that some
generated texts may end up highly repetitive or with other
defects. This is extra important for generated news articles
controlled with GeDi and PPLM, as their outputs are more
prone to be fraught with defects due to the extra complexity
the control mechanisms add to the text generation process.
As an attacker is likely to reject synthesized texts with obvi-
ous defects, especially news articles, and that evaluations of
detection algorithms may result in overly optimistic results
if a large fraction of such low-quality texts are used during
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testing, there was a need for verifying the text quality of
the generated texts used in the experiments. A limited man-
ual assessment was performed on data samples generated
using all different combinations of generators and control
mechanisms being used in the experiments. In this assess-
ment, a file consisting of 3000 random samples were created
per combination. Each such file was checked for approxi-
mately ten minutes each by the two authors (independently
of each other), whereupon the observations were discussed.
The high-level findings from this manual assessment are that
the generators produce impressive content of high quality,
especially when the topic of the text is not being controlled
using PPLM or GeDi. GeDi succeeds well with controlling
the topic, especially for shorter social media posts. These are
very hard to tell apart from genuine social media posts, while
it was somewhat easier in general for longer news articles as
these in many cases got more problems to follow the same
red line throughout the article, compared to the correspond-
ing uncontrolled generated news articles. For PPLM, there
were in some instancesmore visible signs of repetition or that
the attempt to follow a certain topic created less trustworthy
content. There were also more samples in which PPLM did
not succeed on having an impact on the topic of the generated
text.

In addition to this manual assessment, simple heuristics
were utilized for more quantitative text quality assessment.
However, thiswas only used for news articles aswe found it to
be highly variable and not sufficiently well correlated with
human judgement when evaluated on shorter social media
posts. The method used for quantitative assessment of the
social media posts and the obtained results are described in
detail in “Appendix C.1.” The results from the quantitative
text quality assessment confirm the findings that the gener-
ated news articles are generally of high quality, with slightly
more quality issues for texts being controlled using PPLM.

To better illustrate the quality of the generated texts, two
examples are illustrated in Fig. 5. The first generated news
article has received a rather low perplexity value, while the
second has received the highest perplexity among the articles
generated by PPLM-controlled Grover-Base articles. As
can be seen, the objective to introduce positive sentiment has
in the bottom example got toomuch influence over the textual
content, as being reflected in the perplexity score. In general,
this phenomenon tends to occur more often for PPLM than
for GeDi. More examples of generated texts for different
domains, with and without attribute models, are provided in
“Appendix D.”

To summarize, the control mechanisms seem to work
overall, but there certainly are individual cases where the
investigated generators and control mechanisms fail to pro-
duce texts with a content and quality that suits the needs of an
attacker. Our findings suggest that large-scale languagemod-
els such asGrover combinedwithGeDi aremore of a viable

Fig. 5 Top: an example of a news article generated by the Grover-
Mega generator. Bottom: an article generated by Grover-Base and
being controlled using PPLM. The text achieved the highest perplexity
among the texts generated in this way

threat from an information operations perspective, compared
to PPLM which is harder to control and often results in gen-
erated text of slightly worse nature.

7.2 Future work

In the experiments presented in this article, and in almost all
existing research on detection of text generated by language
models, only English texts have been taken into consider-
ation. Information operations involving machine-generated
text are in practice not likely to only involve generation of
English text, but rather a wide variety of languages adapted
for the intended target groups. For this reason, future work in
this area should not only focus on English, as detectors may
perform differently on other languages due to factors such as
the amount of available training data and the morphology of
the language.

Another idea for future work is to attempt to increase the
robustness of detectors against adversarial attacks, as the best
existing detectors in this work have been shown to be highly
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susceptible to both direct and indirect adversarial attacks.
Therefore, it is of interest to evaluate how well approaches
based on, e.g., adversarial training and out-of-distribution
detection methods work in the context of building more
robust detectors.

Finally, it would also be interesting to study to which
degree language models like GPT-3 can be controlled by
attackers during inference time, simply by conditioning on
a few examples of the types of texts of interest. This type of
in-context learning has been shown to work surprisingly well
for other tasks [5], but it is rather sensitive to the exact choice
of prompt and would probably not work for every attribute
attackers would like to control in an information operations
context.

8 Conclusions

Control mechanisms such as PPLM and GeDi provide users
with more fine-grained control of what is being generated by
neural language models, e.g., GPT-2 and Grover. Unfor-
tunately, this increases the risk of malicious actors misusing
automatically generated text for creating and spreading disin-
formation. Several detection algorithms have been suggested
in the research literature for predicting whether texts have
been computer generated or not. In this work, the gener-
alizability of several machine learning-based detectors has
been investigated. Overall, the detectors were able to tell
computer-generated news articles apart from real ones with
reasonable accuracy, while the same task was considerably
more challenging for shorter social media posts. Control-
ling the text generation process with PPLM does not seem to
increase the difficulty of the detection task,while the contrary
holds for textual output being controlled byGeDi.Wheneval-
uating the detectionmethods on in-the-wild datasets and data
from outside the distribution the detectors have been trained
on, the accuracy decreases significantly. Furthermore, even
the best performing RoBERTa-based detector is shown to be
highly sensitive to simple adversarial attacks, causing it to
perform worse than random on white-box attacks in which
the detection model is accessible to the attacker. The adver-
sarial attacks are also shown to transfer well, i.e., the attacker
can severely reduce the detector’s accuracy even though not
having access to the detection model.

These results question the practical usefulness of current
state-of-the-art detectionmethods, and call for more research
on how to improve their generalizability and robustness.
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A Hyperparameters

A.1 Generation details

Unless anything else is specifically stated, the generation
was initialized with a model-specific start token, and the
subsequent text decoded using nucleus sampling with top-
p = 0.95 (as texts generated with nucleus sampling have a
similar variance as humanwritten texts [48]). Each generator
model has been trained on texts with a maximum length of
1024 tokens. Texts exceeding this limit were cropped to 1024
tokens.

A.2 Generation parameters for GeDi and PPLM

The parameters used to generate texts with GeDi and PPLM
are shown in Tables 10 and 11.
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Table 10 Generation parameters for the GeDi datasets

Repetition-penalty ω

GoEmotions Neg 1.2 30

Yelp Polarity Neg 1.2 30

Yahoo Answers Food 1.2 30

GoEmotions Food 1.2 30

Sentiment140 Food 1.2 30

Sentiment140 Neg 1.2 30

Yelp Polarity Food 1.2 20

Yahoo Answers Neg 1.2 30

We used nucleus sampling with top-p = 0.95, temperature = 1, ρ =
0.2, and τ = 0.8 for all of the datasets, following the notation from the
original paper. The food datasets were generated with the topic model
with the control code ”food,” whereas the negative sentiment texts were
generated with the sentiment model

B Precision recall and F1 scores

Tables 12, 13 and 14 show the binary precision (P), recall
(R), and F1 scores of the class machine generated for all of
the models and datasets used in the evaluation in Sect. 6.1.

C Quality assessment of generated texts

C.1 Automated text quality assessment

Ideally, the true news article probability distribution P(x)
would be useful for automatically determining whether a
news article x is of good enough quality or not. For the
news domain, Grover-Mega, Pθ (x), is known to be a good
approximation of P(x), as it has been trained on a diverse
set of news articles with a broad range of topics and news
domains and already has been verified by human subjects
in previous experiments [48]. Perplexity, a widely used met-
ric for verifying language models, is used to determine how

likely an article x is under Pθ (x):

Perplexity(x) = N

√√√√
N∏

i=1

1

Pθ (xi |x<i )
. (3)

Intuitively, a modified generation process is likely to cause
an increase in perplexity, since the generated texts can start to
deviate from the original language model distribution. How-
ever, for extreme, unconfined alterations the language model
will end up in low probability regions it cannot recover from,
causing the perplexity to diverge. Perplexity on its own can
in certain scenarios be misleading, as language models can
end up in high confident repetition loops [25]. To combat
this, we also searched for repetitions within each text. This
was done by checking whether the last n tokens of the text
were identical to the n tokens preceding them. We did this
for n = 1 up to n = N/2 where N is the total number of
tokens in the text. Any text that contained such repetition was
classified as being repetitive.

When verifying the quality of the generated news arti-
cles using the automatic method relying on perplexity and
repetitiveness, we noticed that controlling the text genera-
tion using PPLM resulted in more unlikely generated news
articles than without the extra control, as measured in terms
of perplexity using an unconditioned Grover-Mega model
as an oracle of what is considered to be real-looking text. The
values are necessarily biased as a trained language model is
used to judge what is considered good text quality or not,
but we empirically found that articles that either contained
repetitive sequences of text or had a perplexity at least five
times higher than the mean perplexity of the news articles
correlated well with being judged as having a poor quality
when evaluated manually.

As seen in the first column of Table 15, only a reasonably
small fraction of the generated texts were filtered out. Texts
generated with PPLMmake up a majority of the articles that
did not pass the quality control metrics. A few of the genera-
tions collapsed, resulting in incoherent textswith perplexities
an order of magnitude higher than the mean perplexity for
human articles. This is likely a result of the influence of

Table 11 Generation
parameters for the PPLM
datasets

Stepsize #iterations Gamma gm-scale kl-scale

Sentiment140 BoW 0.03 3 1.5 0.99 0.01

Grover-Base Neg 0.02 2 1 0.95 0.08

Grover-Mega BoW 0.02 1 1 0.95 0.3

Grover-Base BoW 0.02 2 1 0.95 0.08

Grover-Base Pos 0.02 2 1 0.95 0.08

GoEmotions BoW 0.03 3 1.5 0.99 0.01

For each dataset we used top-p = 0.95, temperature = 1, repetition-penalty = 1, window-length = 0, and
horizon-length = 1, following the notation from the original paper
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Table 12 Precision, recall, and F1 scores on the in-distribution datasets

GROVER OpenAI-B OpenAI-L OpenAI-L-F

P R F1 P R F1 P R F1 P R F1

Grover-Base 0.908 0.994 0.949 0.980 0.991 0.986 0.995 0.996 0.995 0.949 1.000 0.974

Grover-Mega 0.893 0.841 0.866 0.972 0.694 0.810 0.994 0.823 0.900 0.947 0.959 0.953

GoEmotions 0.527 0.954 0.679 0.585 0.777 0.667 0.692 0.694 0.693 0.700 0.702 0.701

Sentiment140 0.524 0.891 0.659 0.651 0.660 0.655 0.760 0.484 0.592 0.852 0.781 0.815

Yelp Polarity 0.635 0.864 0.732 0.875 0.757 0.811 0.958 0.872 0.913 0.896 0.917 0.906

Yahoo Answers 0.555 0.944 0.699 0.778 0.654 0.711 0.908 0.691 0.785 0.862 0.771 0.814

Table 13 Precision, recall, and F1 scores on the GeDi and PPLM datasets

GROVER OpenAI-B OpenAI-L OpenAI-L-F

P R F1 P R F1 P R F1 P R F1

PPLM

Grover-Base BoW 0.907 0.993 0.948 0.980 0.998 0.989 0.995 1.000 0.998 0.949 0.999 0.973

Grover-Base Pos 0.906 0.985 0.944 0.980 0.995 0.988 0.995 0.998 0.997 0.949 1.000 0.974

Grover-Base Neg 0.905 0.967 0.935 0.980 0.993 0.987 0.995 0.998 0.997 0.949 0.999 0.973

Grover-Mega BoW 0.889 0.821 0.854 0.973 0.734 0.837 0.994 0.884 0.936 0.947 0.969 0.958

GoEmotions BoW 0.502 0.863 0.635 0.567 0.723 0.636 0.693 0.696 0.694 0.660 0.585 0.620

Sentiment140 BoW 0.491 0.782 0.603 0.664 0.700 0.682 0.799 0.608 0.690 0.843 0.733 0.784

GeDi

GoEmotions Food 0.506 0.875 0.641 0.541 0.650 0.590 0.665 0.613 0.638 0.665 0.599 0.630

GoEmotions Neg 0.517 0.916 0.661 0.517 0.590 0.551 0.608 0.477 0.535 0.603 0.458 0.521

Sentiment140 Food 0.509 0.840 0.634 0.615 0.566 0.589 0.795 0.593 0.679 0.789 0.510 0.619

Sentiment140 Neg 0.520 0.876 0.652 0.638 0.623 0.630 0.804 0.627 0.704 0.777 0.475 0.590

Yahoo Answers Food 0.506 0.775 0.612 0.722 0.500 0.591 0.904 0.669 0.769 0.847 0.680 0.754

Yahoo Answers Neg 0.548 0.920 0.687 0.730 0.520 0.607 0.882 0.534 0.665 0.820 0.560 0.666

Yelp Polarity Neg 0.507 0.517 0.512 0.857 0.640 0.733 0.951 0.782 0.858 0.863 0.683 0.763

Table 14 Precision, recall, and F1 scores on the in-the-wild datasets

GROVER OpenAI-B OpenAI-L OpenAI-L-F

P R F1 P R F1 P R F1 P R F1

DeepFake Bot 0.651 0.981 0.783 0.738 0.645 0.689 0.822 0.469 0.597 0.856 0.516 0.644

TweepFake 0.530 0.838 0.649 0.667 0.760 0.710 0.791 0.749 0.769 0.690 0.647 0.668

GPT-3 0.663 0.694 0.678 0.906 0.631 0.744 0.944 0.470 0.628 0.896 0.713 0.794

Mixed NLG dataset

Grover 0.945 0.945 0.945 0.973 0.780 0.866 0.989 0.996 0.993 0.992 0.998 0.995

CTRL 0.905 0.524 0.664 0.867 0.141 0.242 0.982 0.631 0.769 0.989 0.726 0.837

GPT 0.661 0.108 0.185 0.685 0.047 0.088 0.955 0.236 0.379 0.982 0.459 0.625

GPT-2 0.943 0.914 0.928 0.975 0.858 0.913 0.988 0.913 0.949 0.992 0.986 0.989

XLM 0.000 0.000 0.000 0.959 0.500 0.657 0.951 0.217 0.353 0.961 0.207 0.341

XLNet 0.234 0.017 0.031 0.947 0.386 0.549 0.981 0.581 0.730 0.979 0.385 0.552

FAIR 0.941 0.887 0.914 0.963 0.560 0.708 0.988 0.921 0.953 0.992 0.991 0.991

PPLM 0.945 0.943 0.944 0.973 0.785 0.869 0.989 0.974 0.981 0.992 0.999 0.995
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Table 15 Perplexity of the news
articles before and after filtering,
when using the Grover-Mega
language model as an oracle

Dataset Filtered Perplexity

Unfiltered Filtered

Mean Std Mean Std

RealNews 0.00 8.81 3.69 8.81 3.69

Grover-Mega 0.00 8.23 3.22 8.24 3.21

Grover-Base 0.01 21.16 9.50 21.18 8.67

Grover-Mega PPLM BoW 0.02 11.52 8.70 11.27 5.39

Grover-Base PPLM BoW 0.12 37.08 21.02 36.20 14.93

Grover-Base PPLM Pos 0.06 39.56 36.82 34.90 16.08

Grover-Base PPLM Neg 0.08 41.66 45.07 34.73 16.07

The perplexities were computed on the body of the article, without any metadata conditioning. The first
column shows the amount of articles that either contained repetitive texts or had a perplexity at least five times
higher than the mean perplexity of articles

Fig. 6 Difference in vocabulary
between texts synthesized with
nucleus sampling and texts
generated with GeDi or PPLM.
The plots show the ten most
informative words per dataset
that tell texts generated with an
additional control mechanism
apart from those without, as
extracted from a logistic
regression model based on
TF-IDF unigram features

the attribute models overpowering the influence of the orig-
inal language model. Since the amount of such low-quality
generations was relatively small among all of the generated
datasets, their influence on the following detection results
was judged to be rather limited. The performance metrics
for the detectors have therefore been calculated based on all

generated texts, irrespectively of their perplexity and repeti-
tiveness.

C.1.1 Topic verification

When generating texts with a control strategy such as GeDi
or PPLM, it is important that the chosen attribute (e.g., a spe-
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cific topic or sentiment) is present in the synthesized texts.
If this is not the case it is unlikely that a real attacker would
consider spreading the generated texts. To determine if the
generated texts fulfilled their purpose, we trained a logis-
tic regression model on TF-IDF unigram features extracted
from generated texts to discriminate between texts generated
solely with nucleus sampling and texts synthesized with a
controlled generation strategy. The most discriminative fea-
tures, i.e., the unigrams associated with the weights with the
largest magnitude, were manually inspected to confirm that
the overall content of the new texts got the correct character-
istics.

In order tomake an overall assessment of whether the gen-
erated texts controlled by GeDi and PPLM have been steered
in the right direction or not, the most informative features
have been extracted from the logistic classifier trained on
distinguishing texts generated using attribute models from
those without any extra control mechanisms. Figure 6 shows
the results for the overall difference in vocabulary between
datasets generated with nucleus sampling and the corre-
sponding datasets generated with GeDi or PPLM. For a
majority of the datasets, it is clear that the most informative
words are related to the chosen topic or sentiment. However,
only the most defining words of the dataset as a whole can be
visualized in this way. Manual inspection revealed that many
individual texts were not particularly affected by the control
methods.

D Text generations

Excerpts from the generated datasets are shown in Figs. 7, 8,
9, 10, 11, 12, 13, and 14.

Fig. 7 Social media text generations

Fig. 8 News article generation

Fig. 9 GeDi negative sentiment social media texts

Fig. 10 GeDi food topic social media texts

Fig. 11 PPLM military social media text generations
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Fig. 12 PPLM military news article generation

Fig. 13 PPLM positive sentiment news article generation

Fig. 14 PPLM negative sentiment news article generation
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