
Co‐funded by the Horizon 2020
programme of the European Union

h2020mirror.eu

MIRROR

Migration‐Related Risks caused by
misconceptions of Opportunities and Requirements

Grant Agreement No. GA832921

Deliverable D7.3

Work‐package WP7: Architecture and Information Model

Deliverable D7.3: MIRROR Framework ‐ First Prototype Release

Deliverable Leader EURIX

Quality Assessor MoDAT

Dissemination level Public

Delivery date in Annex I M14, July 31, 2020

Actual delivery date July 31, 2020

Revisions 1

Status Final

Keywords First Prototype, MIRROR Framework, Continuous Integration

MIRROR Deliverable D7.3

Disclaimer

This document contains material, which is under copyright of individual or several MIRROR consortium
parties, and no copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license from the propri‐
etor of that information.

Neither the MIRROR consortium as a whole, nor individual parties of the MIRROR consortium warrant that
the information contained in this document is suitable for use, nor that the use of the information is free
from risk, and accepts no liability for loss or damage suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for any use that may
be made of the information contained herein.

© 2019 Participants in the MIRROR Project

Page 2 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

List of Authors

Partner Acronym Authors

EURIX Paolo Castelvetere, Francesco Gallo, Paolo Manca
LUH Erick Elejalde, Claudia Niederee, Miroslav Shaltev
SAIL Gerhard Backfried, Erinç Dikici, Miroslav Janosik
CERTH Vasileios Mezaris, Alexandros Pournaras

© MIRROR Page 3 (of 41)

MIRROR Deliverable D7.3

Table of Contents

Executive Summary 6

1 Introduction 7

1.1 Background . 7

1.2 Target Audience . 8

1.3 Structure of the Deliverable . 8

2 Requirements and Scenarios 9

2.1 First scenario for prototype implementation . 9

3 Continuous Integration Environment 11

3.1 Agile Approach . 11

3.2 Development Environment . 11

3.3 DevOps practices . 12

3.4 Deployment Environment . 13

4 MIRROR Framework Architecture 15

4.1 Data Management Layer . 15

4.2 Data Analysis Layer . 15

4.3 Access Layer . 16

4.4 Integration Layer . 16

4.5 Client Applications Layer . 16

4.6 Security and privacy by design . 16

4.6.1 Data Management components for security and privacy 16

4.6.2 Access components for security and privacy . 17

5 Data Management Layer 18

5.1 Data Collector . 18

5.2 Indexer . 19

5.3 Media Mining System . 19

5.4 Components for privacy and security . 21

Page 4 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

6 Data Analysis Layer 22

6.1 Text Analysis . 22

6.1.1 Named Entity and Concept Recognition . 22

6.1.2 Sentiment Analysis . 22

6.2 Audio‐visual Media Analysis . 23

6.2.1 Visual Media Annotation and Sentiment Analysis 23

6.2.2 Visual Media Collection Summarization . 24

6.2.3 Automatic Speech Recognition . 24

6.3 Cross‐media Network Analysis . 24

6.3.1 Cross‐media Network Construction . 25

6.3.2 Bias Detection and Reduction . 25

7 Integration and Access Layers 27

7.1 Message Broker . 27

7.2 Activity Logger . 28

7.3 Notifier . 28

7.4 API Gateway . 28

8 Client Applications 31

8.1 User Interface Design: Mock‐Up . 31

8.2 User Interface Implementation . 36

8.3 Other Client Applications . 37

9 Conclusion 39

9.1 Assessment of Performance Indicators . 39

9.2 Next Steps . 40

10 References 41

Glossary 41

©MIRROR Page 5 (of 41)

MIRROR Deliverable D7.3

Executive summary

This deliverable describes the implementation of the first prototype of the MIRROR framework. According
to the project plan, three major releases will be delivered. The second and third release are expected at
M30 and M36, respectively. The main objective for the first release is to provide an early validation of the
MIRROR approach, integrating the available components with their current status of development after the
first year and also to demonstrate the capability of the system to perform and end‐to‐end media analysis,
crawling data from different data sources, analysing such data and providing the results to the user.

The main objective for the first prototype was the integration of technologies into a coherent framework
targeting a main scenario, namely the detection of migration‐related (mis)information campaigns. The
detection of such campaigns, which is one of the core objectives of the project, was identified as a first
high‐priority scenario to drive the integration of the components.

The background for the first prototype is provided by several results which have already been produced by
the project, in particular all the requirements and scenarios identified by WP2, the conceptual information
model and the architecture defined in WP7 and the analysis components developed in WP4, WP5, WP6.

The overall framework can be represented in a top‐down approach as a number of layers, namely the client
applications, the access layer, the data analysis layer and the data management layer. All such layers are
connected by a cross‐layer enabling the integration and communication. For each layer the components
developed and integrated after the first year have been described.

In addition to the technical results, another WP7 objective for the first year was the creation of a contin‐
uous integration environment, fostering the collaboration among technical and non technical partners for
collection of feedback from the users and the deployment of new functionalities.

During the first year a joint effort from all partners was performed to identify the main expectations from
the users and the high priority functionalities to be provided by the system. Adopting an Agile approach,
the collaboration included periodic calls beyond the plenary meetings and the adoption of tools for the
management of the development process. Timeboxed iterations were supported by weekly calls where all
interested partners could share progress, discuss about impediments and plan the next steps.

One of the core tools enabling the collection of feedback was a mock‐up of the user interface, which was
available to all the partners and was improved iteratively, collecting the news ideas and requirements along
the first year of the project, providing a common vision of the target system and a common ground for the
discussion.

Targeting the project pilots, the environment for continuous integration of the results has been prepared,
adopting cutting edge technologies for the development and deployment of the prototype. The deploy‐
ment mechanism leverages DevOps practices, with automation and configuration management tools.

Page 6 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

1 Introduction

In this document we describe the first release of the MIRROR integration framework, corresponding to the
first of three major releases which will be delivered during the project and will be described in deliverable
D7.5 and D7.6, at M30 and M36 respectively.

Since the main objective for the first release of the framework is to provide an early validation of the MIR‐
ROR results, in terms of user requirements, scenarios, developed components and their continuous integra‐
tion, in the following we focus mainly on providing an overview of the current status of the development
and integration after the first year, rather than on the technical details of each components, deliberately
leaving this information for the deliverable D7.5, where the overall system will be consolidated and in a far
mature state. The focus of the first prototype is on data crawling from the different data sources, analysis
of different media types and on the results provided by the user interface. Concerning the technical com‐
ponents, the current status has been described in the corresponding M12 deliverables, namely D4.1, D5.1
and D6.1 and the integration level reflects the status of the different components after the first year.

The main objective for the first prototype was the integration of technologies into a coherent framework
targeting a main scenario, namely the detection of migration‐related (mis)information campaigns. This
detection of such campaigns, which is one of the core objectives of the project, was identified as a first
high‐priority scenario to drive the integration of the components.

The overall framework is presented in a bottom‐up approach, starting from data layer up to the user in‐
terface. As described in the following, all framework layers are connected by a cross‐layer enabling the
integration and communication.

In addition to the technical development, WP7 is also in charge for the creation of a continuous integration
environment, fostering the collaboration among all partners and the early deployment of a working system
where new functionalities are continuously integrated in order to collect feedback from the users along
the whole project duration and in particular during the project pilots. In the following we describe the
collaborative environment, the tools and the development approach and the use of a system mock‐up to
stimulate discussion and gather feedback.

This deliverable provides input to WP10 for the preparation of the pilots, in particular for what concerns
the technical requirements for the demonstrations hosted by different partners.

1.1 Background

The first MIRROR framework prototype leverages previous results achieved in WP7 and other WPs. In par‐
ticular it is worth mentioning the requirements analysis and scenarios from WP2, described in deliverable
D2.1 and the definition of the MIRROR architecture and integration approach discussed in deliverable D7.1.
The information model in deliverable D7.2 defines the core entities and their relationships to be imple‐
mented in the system. The framework has been designed in order to integrate the technical components
fromWP4, WP5 andWP6, described in deliverables D4.1, D5.1 and D6.1, respectively. The input fromWP3
has driven the security by design approach for the design of components: even if the actual implemen‐
tation of the components devoted to data privacy and security is in progress and they will be part of the
second prototype, the current architecture is already compliant to the requirements from WP3. Finally,
targeting the second year pilots, the setup of the continuous integration environment and the analysis of
the requirements for the pilots have been conducted in collaboration with WP10.

© MIRROR Page 7 (of 41)

MIRROR Deliverable D7.3

1.2 Target Audience

The results presented in this deliverable refer to the implementation of the first prototype and to the inte‐
gration of the components. Therefore, the target audience of the deliverable aremainly software engineers
and other technical roles in the IT department, although the emphasis is often on the integration of com‐
ponents as boxes with connectors, rather than on their internal functioning. From another perspective,
this deliverable can also be seen as a proof of concept for validating the MIRROR approach into a coherent
system for future adopters, and as such people with management roles evaluating the exploitation of the
MIRROR framework could be interested in the results reported here, mainly for what concerns the impact
on the IT infrastructure.

1.3 Structure of the Deliverable

The document is organized as in the following: in Section 2 we briefly summarize the relevant requirements
and scenarios for the MIRROR project, focusing on the main identified scenario for the first prototype; in
Section 8 we describe the development strategy and the continuous integration environment; in Section 4
we provide an overview of the overall architecture in terms of layers and components; the architectural
layers are described in Section 6 (Data Management), Section 6 (Data Analysis), Section 7 (Integration and
Access), and Section 8 (Client Applications). For each layer we discuss the role in the overall framework and
the status of the components; in Section 4.6 we discuss security and privacy issues related to the prototype
implementation.

Page 8 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

2 Requirements and Scenarios

The analysis of requirements and the identified scenarios has been discussed in D7.2. The original scenarios
included in the project proposal, namely Scenario 1 ‐ Detecting hybrid threats driven by perception manip‐
ulation and Scenario 2 ‐ Counteracting threats created by misperceptions have been further analyzed and
discussed with the users, resulting in two additional scenarios: Scenario 3 ‐ Supporting border agents with
targeted information and Scenario 4 ‐ The cyber intelligence analyst – an ordinary day at work. Different
personas and user stories were also identified (see D2.1 Section 4).

Such scenarios and the associated user stories, combined with the analysis of the migration factors, were
used to create a list of functionalities and identify the requirements for the overall MIRROR system. Those
functionalities and requirements have been used as starting point for designing the system and have been
further analyzed and discussed with the users.

The requirements and scenarios defined in D2.1 advanced the awareness about the project objectives and
enabled the discussion among all partners about the high priority functionalities to be implemented by the
system. The users shaped their vision of the MIRROR system and stressed the need for a user interface
supporting the activities of border agents and analysts in monitoring specific situations, enabling advanced
searches on all media sources, including specific topics, locations, languages or more general migration
related concepts. The core functionalities of the user interface, discussed with the support of a mock‐up
(see Section 8, included not only the advanced search, but also a dashboard and an update page where the
system should also provide automatic notifications about the observed situations. Moreover, the possibility
to bookmark the searches and also to export the results for internal reports were also identified as relevant
functionalities.

Based on the requirements and scenarios and on the feedback collected from the users during the first year,
a first scenario was identified to drive the development of the prototype. The scenario can be summarized
as detection of migration‐related (mis)information campaigns and is briefly described in the following
Section. The user involved in the scenario is a border agent.

2.1 First scenario for prototype implementation

Title Detection of migration‐related (mis)information campaigns

Description As an officer involved in border control, the user has heard about new migration relate activi‐
ties on a specific route. Using the MIRROR system, a Situation can be used to observe these activities. The
user can create a new Situation or can switch to one of the situations that have already been defined (e.g.
situation at Greek‐Turkish boarder). The system provides the results associated to the Situation, showing
media perception and activities possibly related to information campaigns. The system provides the user
an overview of the Situation (with a summary) and can be used to continuous monitoring, notifying the
user about what is new. The user can further refine the search using different types of filters, such as Lan‐
guage, Location, Topics, Migration‐Related Semantic Concept (MRSC). Based on the results, the user can
create new Situations or change existing ones in order to have customized results from the system. The
Observed Situations are used as an alternative access mechanism to free search, for a more long‐term per‐
spective, to observe via Filters more than one Situation, e.g. Situation at Greek Turkish Border, Situation in
Mediterranean sea, etc. The system prepares and updates a media overview and overview over Informa‐
tion Campaigns for the Situations. The system periodically search for new information and notifies the user
about new results concerning the Observed Situations. The user can navigate the results which are also

© MIRROR Page 9 (of 41)

MIRROR Deliverable D7.3

provided separately for the different media types. The system provides the image, video and text analysis
results, the automatic speech transcription and highlights the identified topics.

Goals Obtain media perception and activities possibly related to information campaigns concerning a Situ‐
ation of interest.

Relevance The scenario demonstrates the use of technologies developed in the project for the detection of
(mis)information campaigns, which is one the core concepts behind the MIRROR approach. The scenario
involves the technical components developed in the first year, leverages their integration in the framework
and the implementation of the workflows for data collection, analysis, storage and allows the assessment
of the user interface. For what concerns the information model, the core concept of Situation has a central
role in the scenario, since it defines the relevant information the user is looking for and also provides a
validation of themodel. The border agent is one of the key personas defined in the overall project scenarios.
The scenario leverages the support for relevant languages (e.g. in the analysis of the Greek‐Turkish situation
the relevant languages could be Greek, Turkish, English plus others). The scenario also demonstrates the
capability of the system to crawl information frommany sources and to perform automated media analysis
for different media types and sources and to filter the results.

Page 10 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

3 Continuous Integration Environment

In the following Sections we describe the environment for the development of the MIRROR framework,
which includes both practices and technologies. One of the objectives for WP7 during the first year was
establishing such environment, which will support the development and deployment activities during the
second and third year of the project.

3.1 Agile Approach

The adoption of an Agile methodology and the advantages for the MIRROR context have been already dis‐
cussed in detail in Section 4 of deliverable D7.1, where it was foreseen that the best approach for MIRROR
would be to define a custom Agile approach fostering continuous feedback and timeboxed development.

The continuous feedbackwas achieved through the involvement of all partners into the design of the system
and in particular of the user interface, as already described in Section 2. The creation of a mock‐up (see
Section 8 was beneficial to stimulate feedback and agree on a common vision for the target system. The
mock‐up was iteratively improved and provided a common ground for the discussion.

Beyond plenary meetings, periodic WP7 calls were organized during the first year, some were organized as
extended calls to discuss at a non technical level, while others were limited to technical partners involved
in the software development. Typically theWP7 calls were biweekly, but in specific periods they have been
organized weekly.

In order to manage the software development in a collaborative way, a Kanban1 dashboard was used. A
screenshot of the board is shown in Figure 1, where the card containing the tasks are managed in a very
simple and intuitive manner, using cards which can be moved through different stages, from the backlog to
the To Do list (active tasks), up to the completion (Done).

TheMIRROR Kanban board is available on the demo server hosted by LUH, at the following URL (registration
required):

https://d-mirror.l3s.uni-hannover.de/wekan

The cards can be assigned, revoked, edited and populated with comments and attachments. The cards
have a priority field with different levels (Low, Medium, High, Critical): in this way each member of team
who is assigned a number of cards, can identify the ones with higher priority which must be closed earlier.
It is worth noticing that for the implementation of the Kanban board we used WeKan2, an open source
implementation of the popular Trello3 board, which has the advantage that it can be installed locally (e.g.
in a Docker container), while Trello is managed by the Atlassian company and data are stored on the cloud.

3.2 Development Environment

For the development of the framework and internal components we make use of GitLab4, hosted at LUH
premises at the following URL (registration required):

1https://en.wikipedia.org/wiki/Kanban_board, last retrieved 31 July 2020
2https://wekan.github.io/, last retrieved 31 July 2020
3https://trello.com/, last retrieved 31 July 2020
4https://gitlab.com/, last retrieved 31 July 2020

©MIRROR Page 11 (of 41)

https://d-mirror.l3s.uni-hannover.de/wekan
https://en.wikipedia.org/wiki/Kanban_board
https://wekan.github.io/
https://trello.com/
https://gitlab.com/

MIRROR Deliverable D7.3

Figure 1: MIRROR Kanban board for framework development

https://git.l3s.uni-hannover.de/

GitLab is used as source code repository. The framework related development tasks are managed in a WP7
group, with several internal repositories for the fronted and backend components. The code is available
to all partners and the codebase available on the project GitLab will be used for the deployment of the
framework in the different environments, for the demo instance and for the pilots.

It is worth noticing that having adopted an automated approach based on DevOps [Kim et al., 2016] prac‐
tices, not only the framework source code but also the infrastructure is managed using a repository (infras‐
tructure as code).

For the development of the framework, different languages and technologies are used. The glue code used
to integrate the componentswith themiddleware is written using Python. The integrated components have
their own language and internal technologies, this is enabled by the use of deployment within Docker con‐
tainers and the communication through REST APIs, which makes the communication among components
agnostic of internal implementation details. Concerning the different databases used by the framework,
they include MongoDB and TinyDB for the storage part, while other components for indexing and messag‐
ing have their own databases. The front‐end part is mainly developed using Javascript. The communication
is based mainly on JSON and occasionally on XML.

3.3 DevOps practices

The relevance of DevOps [Kim et al., 2016] practices in the MIRROR context has been already discussed
in Section 4 of deliverable D7.1. Continuous integration (CI), automated configuration management and
continuous delivery (CD) [Humble and Farley, 2010] make use of specific tools to implement a toolchain

Page 12 (of 41) h2020mirror.eu

https://git.l3s.uni-hannover.de/

Deliverable D7.3 MIRROR

supporting the whole software lifecycle. Popular technologies such as Ansible5, Jenkins6, and Artifactory7

have been used for CI/CD. Recently the use of CI/CD facilities provided by GitLab have been investigated
and will be taken into account for the future development of the framework. The main advantage of using
GitLab would be that the software development and CI/CD are managed using a single tool, rather than
splitting the toolchain among different systems. Moreover, GitLab is gaining more and more momentum in
the DevOps community, providing several best practice and support for many different technologies, APIs
and protocols.

3.4 Deployment Environment

The current deployment environment is hosted at LUH premises and includes a Debian Server 10 64‐bit
(d-mirror.l3s.uni-hannover.de), which is accessible to all partners for the development. Access to the
server is enabled via SSH and HTTP(S). Currently the resources assigned to the demo server include 16 GB
RAM and 1 TB disk, which have been estimated as sufficient for the deployment of the prototype. The MIR‐
ROR system is currently made up of a number of components running locally on the same machine (inside
containers) plus some remote services. The remote services are operated by partners at their premises or
on dedicated infrastructure. The local components include the integration layer, the UI and some technical
components.

The deployment environment is based on container and in particular on Docker8. The different compo‐
nents of the framework are deployed within Docker container. Nowadays, containers are emerging as a
reference technology for the deployment of complex IT systems. In the MIRROR context, they provide sev‐
eral advantages, in particular they help reduce the complexity of the configuration of the overall system,
simplify the update of each component independently, enabling the development teams to release new
functionalities and new versions of their components without interrupting the operations of the overall
system or requiring manual intervention for deployment and configuration.

Since the number of containers to bemanaged is increasing due to new components made available during
the project, a management dashboard was configured to manage all container in the Docker instance on
the demo server. A screenshot of the Docker management dashboard is shown in Figure 2:

The dashboard provides detailed information about the status of all containers, including access to the logs,
as shown in Figure 3:

The dashboard is based on portainer.io, which is considered adequate for MIRROR scopes, since it provides
enough administrative and monitoring functionalities without the complexity of other solutions such as
Kubernetes.

5https://www.ansible.com/, last retrieved 31 July 2020
6https://www.jenkins.io/, last retrieved 31 July 2020
7https://www.jenkins.io/, last retrieved 31 July 2020
8https://www.docker.com/, last retrieved on 31 July 2020

©MIRROR Page 13 (of 41)

d-mirror.l3s.uni-hannover.de
https://www.ansible.com/
https://www.jenkins.io/
https://www.jenkins.io/
https://www.docker.com/

MIRROR Deliverable D7.3

Figure 2: Docker management board for framework components

Figure 3: Docker containers monitoring

Page 14 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

4 MIRROR Framework Architecture

An overview of the MIRROR architecture is depicted in Figure 4, based on the diagrams included in D7.1.
The different layers of the architecture are represented.

Figure 4: MIRROR architecture overview: the different layers and components are represented.

4.1 Data Management Layer

The Data Management layer includes both the components responsible for data collection and storage,
but also those in charge for implementing privacy and security processes, such as pseudonymisation and
retention policies. Such components are activated according to some of the processes defined in D7.2, in
particular Data Collection, Pseudonymisation, Deletion and Verification. The collected data are represented
in the MIRROR Conceptual Information Model (MIRROR‐CIM) by the Media Element concept (see D7.2).

4.2 Data Analysis Layer

The Data Analysis layer includes the components responsible for the different types of data analysis, sup‐
porting the different source types. The associated processes areMedia Analysis, Linking and Summarization.
The results of the analysis are mapped to Annotations, Links, different types of Concepts and other related
model elements in D7.2.

The Access and Integration layers enable the transition from the data level to the user level, the Client
Applications layer.

© MIRROR Page 15 (of 41)

MIRROR Deliverable D7.3

4.3 Access Layer

The role of the Access Layer consists in translating the technical information available in the framework
backend into data accessible and understandable by the user, through high level APIs. In addition to this,
the Access layer takes into account the user role and profile andmonitors the user activity: this information
is useful to provide the user with the correct information and at the right level of detail, where privacy and
security are guaranteed.

4.4 Integration Layer

The Integration layer is in charge for the communication among the layers and of orchestration of the pro‐
cesses, hence is supposed to be running behind the scenes during the execution of the processes in D7.2.

4.5 Client Applications Layer

The Client Applications layer, which communicates with the Data Analysis layer through the Access layer, is
the user level: on top of the analysis results, adding a higher level of aggregation, the user can access the
information provided by the framework. At this level the model elements which are relevant are the Find‐
ings, the Observed Contexts and Situations and all the other elements described in D7.2. Based on them,
the analysis of the perception and misperception applies: this is represented in the model by Perception
and Threats elements in D7.2.

4.6 Security and privacy by design

The architecture of the MIRROR system does not include a security layer, as an additional sub‐system to
be added later to the system to implement perimeter security to protect the inner unsecured system, but
we rather tried to implement a security by design approach, were all issues related to security and privacy
are taken into account since the beginning and have an impact on the design and implementation of the
components.

The two layers which are most involved in security and privacy by design are the Data Management layer
and the Access layer.

4.6.1 Data Management components for security and privacy

The Data Management layer includes components for implementing data retention policies (Data Eraser)
and pseudonymization (Pseudonomyzer). Such components interact with a number of Storage components
within the Data Management layer, namely the Reporting Database, the Staging Area, the Media Storage
and the Secure Data Vault (see Figure 4 and Figure 4 in Section 5).

The Data Eraser and the Pseudonomyzer operate at data management level and affect the way the system
stores information in order to prevent access to sensitive data and to guarantee that data is retained for the
minimum amount of time necessary for system operations. Moreover, the system is designed to support
different policies about data storage and exchange with external systems: one of the integration patterns

Page 16 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

used by the system is the implementation of specific adapters for each component in order to exchange
only information required for the specific analysis tasks (e.g. video or image URL) and the system itself
could be configured to store or not the original raw data.

The Data Collector temporarily stores the retrieved raw data in a Staging Area, then it notifies via the Mes‐
sage Broker the presence of the new data to the Pseudonomyser. The pseudonymization entails the sub‐
stitution of all occurrences of real names, surnames and nicknames found in the collected media with fic‐
titious counterparts, to hinder the tracking of statements and media to their owner’s identity, while pre‐
serving a one‐to‐one correspondence between real and fictitious names. Then the Pseudonymiser writes
the pseudonymised data in the Media Storage, notifying their availability through the Message Broker, and
stores in an encrypted way the sensitive mappings between real and fictitious names in a separate secure
place called Secure Data Vault.

Sensitive content is hence sent by the Data Manager to the Secure Data Vault, a storage which is intended
to provide higher security safeguards. The Secure Data Vault is also employed by the Message Handler to
log all the exchangedmessages for auditing purposes. A blockchain is currently being considered as a possi‐
ble technology for implementing the Secure Data Vault, in order to prevent any tampering in the mappings.
These sensitive data are retrieved and used only upon specific requests. This reverse pseudonymisation
operation is again implemented by the Pseudonymiser, as part of a dedicated workflow, with the appropri‐
ate authorisation checks and safeguards in place. In order to further minimise the chance of exposure of
sensitive information, the pseudonymised data stored in the Media Storage is continuously deleted by the
Data Eraser, another component of the Data Manager, after the expiration of a configurable retention time.
This progressively reduces the amount of data connected to the fictitious‐to‐real name mappings stored in
the Secure Data Vault, ultimately stripping the oldest mappings of their sensitive nature.

4.6.2 Access components for security and privacy

The access layer is based on an API Gateway component which implements authorization and authentica‐
tion, guarantees encryption of data exposed by the system and defines the APIs to interact in a secure and
protected manner with the system, preventing access to internal data, systems and interfaces.

The user interface and other client applications interact with the system through the API Gateway only. The
user interface will support the definition of user profiles, as an additional way to better control access to
sensitive data, depending on specific authorizations.

Many analysis components run locally in the container infrastructure, hence data flow can be better mon‐
itored and controlled. It is worth mentioning that the integration layer and the access layer leverage tech‐
nologies implemented according to best practices in enterprise application integration and enterprise se‐
curity, such as loose coupling and identity and access management.

© MIRROR Page 17 (of 41)

MIRROR Deliverable D7.3

5 Data Management Layer

The data management layer includes several components supporting data crawling, storage, indexing and
protection. The following components have been developed so far: Data Collector, Indexer and Media
Mining System. The other components defined in the architecture (Data Eraser and Pseudonomyzer) are
still under development and have not been integrated yet. In the following we provide a short description
about the status of the components.

5.1 Data Collector

TheData Collector is in charge for data scraping from the different sources and for providing such data to the
system. As depicted in Figure 5 taken from D7.1, the Data Collector communicates with other components
in the data management layer and interacts with the Message Broker in the integration layer.

Figure 5: The Data Manager and Message Handler Containers described with a C4 model Component diagram

The communication with the integration layer is provided by an Adapter implemented in Python language,
capable of interacting through asynchronous messages on specific queues.

TheData Collector is intended to communicatewith external Data Sources supporting differentmechanisms.
Currently the main data source is provided by the Media Mining System, described in the following. The
Data Collector communicates with the Media Mining System through REST APIs. The core module respon‐
sible for fetching data is implemented in Python and provides a specific configuration to support specific
queries to theMediaMining System and a internal Scheduler which incrementally executes the appropriate
queries to get data. The Scheduler also stores time information about the last successful query, in order to

Page 18 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

catch upwithmissing data in case of temporary failures or inaccessibility of the Data Sources. An embedded
DB based on TinyDB is used as a supporting DB during the operations.

5.2 Indexer

The Indexer component is responsible for retrieving information about data sources and the results of the
analysis, in order to publish this information into a global index to support search and access.

The component currently includes an Adapter to interact with the Message Broker, a search service and a
core module to fetch data from the Message Broker and store into the index.

The Adapter and the module to index the results are implemented using the Python language. ElaticSearch
is used as search engine: it is based on the Lucene library which provides a distributed, multitenant‐capable
full‐text search engine with a REST interface and schema‐free JSON documents. Elasticsearch is developed
in Java, clients are available for a huge variety of languages and technologies and currently is themost popu‐
lar enterprise search engine. Elasticsearch can be used to search all kinds of documents. It provides scalable
search, has near real‐time search, and supports multitenancy. Indices can be divided into shards and each
shard can have zero or more replicas. Each node hosts one or more shards, and acts as a coordinator to
delegate operations to the correct shard. Rebalancing and routing are done automatically.

5.3 Media Mining System

The Media Mining System (MM‐System) provides a framework for the collection, processing, storage and
retrieval of a variety of data from traditional and social media sources. The overall architecture is depicted
below in Figure 6.

The overall system consists of multiple types of components:

• MediaMining Feeders: to automatically record and harvest multimedia, audio and textual data from
a series of traditional and social media platforms

• Media Mining Indexer (MMI): to process and enrich data and produce annotated outputs

• Media Mining Server: to store indexed and multimedia content

• Media Mining Clients: a set of clients for querying and visualization of information

All of the above are components. The MMI itself integrates a series of sub‐components, such as audio‐
segmentation and ‐classification, Automatic Speech Recognition (ASR), speaker identification (SID), Named
Entity Recognition (NER), Topic Detection (TD) and Sentiment Analysis (SA). Not all of these technologies
may be available depending on the particular language of data being processed. The MMI – and hence all
the individual technologies – can also be made available as dockerized images, thus allowing the include
MMI functionality into a micro‐service based architecture.

Once set up, the system automatically and continuously records and harvests data from multiple sources
in different languages. The raw data then runs through a series of processing steps: the speech content
is transcribed, indexed and enriched with information regarding language, speaker, named entities, topics,
and sentiment. It is subsequently stored in the back‐end server for later search and retrieval, and can also
be archived. Visualisation and analysis of trends, relations, global hot spots, profiles, as well as ontologies

© MIRROR Page 19 (of 41)

MIRROR Deliverable D7.3

Figure 6: Media Mining System overview.

and Social Media Analytics pave the way for turning raw, unstructured data into actionable knowledge and
intelligence.

The MM‐System can also serve as a data‐provider in a DaaS‐manner, in which case all ingestion and pro‐
cessing is carried out as described above, but instead of accessing the enriched content and data via the
clients, this access takes place via a REST‐API. The same breadth and variety of data can be access this way
and be funneled to further processing (outside the MM‐System). Figure 7 below provides an overview of
the MM‐System for DaaS operation.

The overall MM‐System is a modular system aiming to cover the complete OSINT workflow cycle from the
requirements phase to the dissemination and feedback phases. It enables OSINT professionals to quickly
extract meaningful analyses from unstructured data in a variety of formats across multiple languages and
sources. Analysts are supported in their work by tools to visually explore and search large volumes of data
according to their mission and fields of intelligence. The MM‐System consists of a set of technologies pack‐
aged into components and models, combined into a single system for end‐to‐end deployment. A number
of toolkits allow end‐users to update, extend and refine models in order to respond flexibly to a highly dy‐
namic environment. Not all components and technologies need to be present initially and can be added
flexibly over time. Several Feeders, Indexers and Servers may be combined to form a complete system.

Within MIRROR, the MM‐System will be used in the DaaS‐manner described above, serving as a data‐
backend for the collection and enrichment of input. Enrichment capabilities will also become available

Page 20 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

Figure 7: Media Mining System DaaS operation.

within the MIRROR platform during the project effectively reducing (and finally eliminating) the need for
enrichment within the MM‐System. Eventually, this will render the MM‐System to be only a provider of
raw‐data.

5.4 Components for privacy and security

As already mentioned in Section 4.6, the data management layer includes two components related to pri‐
vacy and security, namely the Pseudonomyzer and the Data Eraser. The Pseudonomyzer is intended to
implement procedures to prevent access to sensitive data, part of its functionalities could be embedded in
other components. The Pseudonomyzer is not included in the first prototype since it is still under develop‐
ment, but is planned for the integration in the second release. The Data Eraser is in charge for implementing
data retention policies and mainly operates at data storage level. Also this component is still under devel‐
opment.

For what concerns the Storage components, the Staging Area and the Media Storage are currently based
on a NFS mounted by the server hosting the framework instance and on TinyDB, an embedded DB, just for
metadata related to the data scraping process, used for further processing. The Secure Data Vault is still un‐
der development, along with the Pseudonomyzer, in collaboration among different partners, evaluating the
use of the blockchain for the implementation of the key mappings generated during the pseudonymization
process and the reverse one. The ReportingDatabase is provided by the implementation of the Cross‐media
Analysis components, described in Section 6

©MIRROR Page 21 (of 41)

MIRROR Deliverable D7.3

6 Data Analysis Layer

In this Sectionwe describe the Data Analysis layer, which includes the components developedwithin techni‐
cal Work Packages (WP4, WP5, WP6), covering the different aspects of media analysis implemented in the
project. According to the architecture diagram in Figure 4, the components are associated to the different
types of analysis for Text, Audio‐visual Media and Cross‐media Network.

We focus here on the list of components which are actively involved in the main scenario and that (are
ready for testing?) at the current stage of the project. For the others, we briefly summarize the status and
the future plan targeting the second prototype implementation which will be described in deliverable D7.5.

For each component we briefly describe the role in the overall framework and in the implementation of
the main scenario for the first prototype, described in Section 2, the development status with available
functionalities and the deployment and integrationmechanism. For technical details about the components
please refer to the corresponding WP technical deliverables.

6.1 Text Analysis

6.1.1 Named Entity and Concept Recognition

Role of the component The Named Entity Recognition (NER) component takes as its input a sequence of
words and annotates certain classes of named‐entities and concepts in the input text. This input text may
come from textual sources or be the output of a prior processing‐step such as Automatic Speech Recognion
(ASR). The component supports different models for tagging: pattern‐based matching or statistical match‐
ing.

Development status As of the submission of this deliverable, the NER component is available for the En‐
glish language. Further languages which are relevant to MIRROR are currently under development. Several
(pattern‐based) models for the languages most relevant to MIRROR have been developed and will be pack‐
aged within the upcoming months. In addition, a statistics‐based model is being developed and currently
in beta‐testing for English.

Deployment and integration The NER component has been packaged into a docker‐component, expos‐
ing a REST‐API. Currently, the NER models are packaged together with the NER‐engine, resulting in one
docker‐component per language. The component receives a text‐document as input and returns an en‐
riched document as JSON upon successful completion of the annotation process.

6.1.2 Sentiment Analysis

Role of the component The Sentiment Analysis (SA) component attempts detect positive and negative
polarity as well as the intensity of these aspects uttered in a text. Different levels of analysis, from phrases
to complete documents as well as the possibility to combine positive and negative aspects into a mixed
class (with a 4th class, neutral in case neither of these are detected) characterize the Sentiment Analysis
component. The component is based on different lexica in combination with processing mechanisms for
phenomena such as negation, boosting or the use of idioms and slang. Furthermore, the component allows
for adaptation to particular domains as well as for content from social media.

Page 22 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

Development status As of the submission of this deliverable, the SA component is available for the English
language. Further languages which are relevant to MIRROR are currently under development. As the com‐
ponent allows for domain‐dependent extension, migration‐related terminologywill be accomodatedwithin
the models.

Deployment and integration The SA component has been packaged into a docker‐component, exposing a
REST‐API. Currently, the SAmodels are packaged togetherwith the SA‐engine, resulting in onedocker‐component
per language. The component receives a text‐document as input and returns an enriched document as JSON
upon successful completion of the annotation process. The annotated sentiment is available on different
levels of granularity from the sentence level to the document level.

6.2 Audio‐visual Media Analysis

6.2.1 Visual Media Annotation and Sentiment Analysis

Role of the component This component performs visual analysis on images and videos and annotates them
withMRSCs, other generic visual concepts, captions and sentiment value. The annotations are used for the
media summarization and to provide a deeper understanding of themedia content, for search and retrieval.

Development status For all visual annotation approaches and sentiment analysis, initialmethods have been
developed. For MRSC detection, driven by the lack of ground‐truth MRSC‐annotated image/video corpora,
we formulated the problem as a zero‐shot learning / Ad‐hoc Video Search (AVS) problem, and adapted
to this end a SoA method that we previously developed for AVS. We tested this method in MIRROR on a
couple of generic‐concept benchmark datasets so as to quantitatively assess and document the sensibil‐
ity of re‐purposing an AVS method for concept detection, and experimented with retrieving videos that
are associated with specified MRSCs that were defined in MIRROR. For generic visual concept detection
in video, we started from a SoA deep‐learning method (published in early 2020) that we had previously
developed, and we extended it by introducing a NetVlad layer in the input of the network (so that multiple
video frames, instead of one frame at a time, can be effectively represented), and aMixture of Experts layer
in the output of the network. Experiments in the large‐scale YT8M video dataset showed that these exten‐
sions increased the performance. For video captioning, we experimented with the HACA model, published
in 2018, and following several experiments we optimized the initial implementation that was eventually
adopted in MIRROR. For sentiment analysis, we started with a literature review, and by adopting, for train‐
ing our algorithms and for experimentation, the large scale SentiBank Flickr dataset. For representing the
image/video content, we employed the “inception” neural network architecture, pretrained on the YT8M
video dataset. On top of these representations, we trained two networks to perform classification to po‐
larity (a one‐dimensional sentiment indicator ranging from positive to negative), and adjective noun pairs
(ANPs). The initial results were promising.

Deployment and Integration A REST service has been implemented to serve as the API of the Visual Me‐
dia Annotation and Sentiment Analysis component. All the visual analysis methods, with the exception of
sentiment analysis, have been integrated in the service. The service is running remotely in CERTH in an
adequately equipped Linux server with GPU support. The programming language used for the REST service
and the visual analysis methods is Python. Full documentation for the use of the API has been provided.

© MIRROR Page 23 (of 41)

MIRROR Deliverable D7.3

6.2.2 Visual Media Collection Summarization

Role of the component This component will create a concise, yet descriptive, summary of media items
retrieved by the media mining system of the MIRROR framework. This condensed representation will facil‐
itate search and navigation in large media collections.

Development statusWe reviewed the latest literature in image/video collection summarization. We estab‐
lished a baseline approach that uses the YT8M extractor to represent the images in a vector space; this is
a SoA representation that is also used by the Visual Media Annotation and Sentiment Analysis component,
for generating the generic visual concept annotations and the sentiment analysis results, respectively, thus
minimizing the computational overhead of summarizing collections of media items that have gone through
these earlier analysis steps. The vector representations within a media collection are clustered using a
k‐means algorithm, which had been successfully used in the past in combination with older image/video
representations and was shown to have advantages over other clustering algorithms such as DBSCAN /
HDBSCAN. Representative images/videos are selected from each cluster, based on minimal distance from
the cluster’s center. Early qualitative results of this baseline look promising; the more formal assessment
of them is work in progress.

Deployment and Integration This component has not yet been integrated in the MIRROR framework. It is
planned to perform the summarization locally in the MIRROR framework by exploiting the visual represen‐
tations extracted by the Visual Media Annotation and Sentiment Analysis component.

6.2.3 Automatic Speech Recognition

Role of the component The Automatic Speech Recognition (ASR) component aims to provide the user with
a written transcription of the spoken content in audio‐ or multimedia files. It encompasses several stages of
processing, such as signal processing, segmentation into speech and non‐speech sections of the input and
the actual recognition and transcription process. The output of this component is a JSON structure which
contains an automatic segmentation of the audio, a list of words in each segment together with start‐end
timestamps and confidence scores. In addition it is possible to output alternative transcripts in an nbest‐
manner. The ASR component thus aims at making audio and multimedia contents available for further
enrichment and retrieval, allowing to detect relevant content also in these kinds of input.

Development status As of the submission of this deliverable, the ASR component is available for the English
language. Further languages which are relevant to MIRROR are currently under development. Several
models for ASR for the languages most relevant to MIRROR have been developed and will be packaged
within the upcoming months.

Deployment and integration The ASR component itself provides a C/C++/C# API and has been packaged
into a docker‐component, exposing a REST‐API. Currently, the ASR models are packaged together with the
ASR‐engine, resulting in one docker‐component per language. The component receives an audio‐file (WAV
orMP3) as input and returns the transcript as JSON upon successful completion of the transcription process.

6.3 Cross‐media Network Analysis

These components aim at improving the framework’s capability to explore and examine migration‐related
social networks through analytical methods. The information for these networks is collected from available

Page 24 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

sources and enriched with the output of the components in the Text and Audio‐visual Media Analysis (see
sections 6.1 and 6.2). In turn, the output of the components in the Cross‐media Network Analysis will
provide to the users (such as border control agencies) the tools for exploring and understanding the possible
sources of misperceptions that can result in threats. Future components will also provide additional means
for tracking and explainingmisperception evolution across the geographical areas of interest aswell as along
the migration paths. A specific focus for this first release has been in the Cross‐media Network design and
the identification of information bias.

6.3.1 Cross‐media Network Construction

The objective of these components is the construction of networks in accordance with the use cases identi‐
fied inWP2during the end‐users’ requirements analysis. The cross‐media network construction component
is implemented as a web service with four main subsystems, namely CNC‐parser, CNC‐gate, CNC‐analyser
and CNC‐gui. The CNC‐parser and the CNC‐gate components are written around Janusgraph9 , an open
source distributed graph database using the Gremlin10 graph traversal language. The temporal evolution
of the data is tracked through the datetime property of the edges, which allow us to compute frames of the
graph. The CNC‐analyser makes use of the NetworkX11 library.

Role of the component Through the CNC‐parser the component translates the input coming from the Mul‐
timedia System (MMS), as well as Text Analysis (see Section 6.1) and Audio‐visual media Analysis compo‐
nents, into data structures suitable to be written into the unified graph model. The CNC‐gate is responsible
for serving queries to the CNC database. It has two basic modes of operation, an exploratory free search
and an advanced search based on filters. Finally, the CNC‐analyser performs aggregation on the subgraph
returned by the CNC‐gate and provides analysis results from the subgraph input.

Development status Initial versions of all CNC components have been created as described in Deliverable
6.1. The implemented basic functionality is sufficient to allow integration into the MIRROR system and
further development and addition of features as the project advances. In particular the CNC‐parser is able
to process input from the multimedia and text analysis systems and create records in the graph database.
The CNC‐gate component is able to select subgraphs based on user filters, including temporal information.
The output of the CNC‐gate can be passed to the CNC‐analyser for aggregation and basic analyses. This is
certainly the component which will be most often subject of further development.

Deployment and integration Following themicroservice architecture of theMIRROR system, theCNC‐parser,
CNC‐gate and CNC‐analyser components are isolated and attached to the whole system via Docker technol‐
ogy. The communication within the system is done via the REST API. For a more detailed description of the
API and the component please refer to deliverable D6.1 First Release of Cross‐media SN Analysis Technolo‐
gies.

6.3.2 Bias Detection and Reduction

Our perception of the situation in a country or a region is strongly influenced by the reflection of this sit‐
uation in mass and social media channels. To avoid information overload, news outlets typically filter the
available news from foreign countries based on the expected interest of the target audiences. The objective

9https://janusgraph.org/
10https://tinkerpop.apache.org/gremlin.html
11https://networkx.github.io/

©MIRROR Page 25 (of 41)

https://janusgraph.org/
https://tinkerpop.apache.org/gremlin.html
https://networkx.github.io/

MIRROR Deliverable D7.3

of this component is to identify some possible kinds of biases. In the first version of the component, we
help identify the bias created in EU‐related news reports due to editorial policies.

Role of the component The input for the component will be collected from the CNC‐gate and CNC‐analyser.
Given that the CNC‐gate generate a subgraph based on the specified filters, the result from this component
will be also based on the same set of filters. The analysis produced will feed the dashboard in the user
interface. The results can be represented in multiple ways. For example, it can show difference in coverage
by topic for different regions. A disproportionate attention to a subject or an unusual polarization of the
reporting may indicate an information campaign in support of a specific agenda.

Development status The initial version of the component allows integration into the MIRROR system and
facilitates further development of additional analysis methods as the project progress. An initial function‐
ality provide a filter‐aware comparison of counties of origin against countries of destination with respect
to mass media coverage. Different method will be provided through specific paths (e.g., /process/mbd).

Deployment and integration The component has been integrated via Docker technology and accessed via
REST API. For practical purposes, the initial version shares a container with the CNC‐analyser.

Page 26 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

7 Integration and Access Layers

In the following we briefly describe the Integration layer and the Access layer, which are responsible for
internal and external communication respectively. The Integration components enable the communication
among the Data Management and Data Analysis components and provides information to the Access layer.
The Access layer is responsible for the communication and interaction from external clients (including the
User Interface). Both layers are described in more detail in Section 4

7.1 Message Broker

The Message Broker component (see also D7.1) implements a Message Oriented Middleware, enabling
loose coupling among components and message‐based asynchronous communication. The advantages of
such messaging systems have been successfully proved in the past decades in scenarios involving small to
big size enterprise applications. The message‐based middleware solutions enable the implementation of
several Enterprise Application Patterns in order to achieve better flexibility, scalability and security. For a
definition of such patterns see [Hohpe and Woolf, 2003].

Since many open source enterprise grade solutions are available, we made a quick analyses of the most
important solutions based on the requirements of the MIRROR system. In particular, the search was fo‐
cused on established andmature open source solutionsmaintained by an active community and on possibly
lightweight and flexible systems, to avoid complications due to heavy complex middleware solutions.

Two candidate solutions were initially selected: Apache Kafka12 and RabbitMQ13. In the end, RabbitMQ
was chosen due to its flexibility, simplicity in terms of configuration and also to the simple deployment
mechanism. Moreover, RabbitMQ has been considered a better solution in the context of MIRROR frame‐
work since the data streams are actually managed by other components (Media Mining System and Data
Collector), so part of the core functionalities provided by Apache Kafka would not be used.

In terms of data retention policies, in the context of privacy by design, RabbitMQhas been considered easier
to manage: unlike most messaging systems, the message queue in Kafka is persistent, the message stays in
the queue until a given retention period/size limit is exceeded, meaning the message is not removed once
it’s consumed, but in principle data could be kept forever, it can be replayed or consumed multiple times;
in RabbitMQ, messages are stored until a receiving application connects and receives a message off the
queue, once the message is consumed, it’s removed from the queue.

RabbitMQ has been integrated in the MIRROR framework using a Docker container. It also offers a simple
yet powerful administrative interface to manage all queues.

AMPQ, the message protocol implemented by RabbitMQ, is flexible and supported by a variety of client
applicationswritten in several languages. The integrationwith the queues has been implemented in Python.

An example of RabbitMQ administrative interface is shown in Figure 8, taken from the RabbitMQ instance
deployed on the MIRROR demo server. Using such interface, it is possible to manage users, queues, re‐
sources and to monitor the flow of messages exchanged on the message broker.

12https://kafka.apache.org/, last retrieved 31 July 2020
13https://www.rabbitmq.com/, last retrieved 31 July 2020

©MIRROR Page 27 (of 41)

https://kafka.apache.org/
https://www.rabbitmq.com/

MIRROR Deliverable D7.3

Figure 8: Admin interface for RabbitMQ

7.2 Activity Logger

The Activity Logger component is responsible for logging all relevant activities in the system, focusing on
technical internal information (access to the system, processes, use of resources, etc). The component is
implemented in Python and communicates with a dedicate queue on the message broker. The deployment
mechanism is through a Docker container, as part of the core components of the system.

7.3 Notifier

The Notifier component is also responsible for collecting events within the system, but at a business level,
such as the availability of new results related to the observed situations or any other notification which
should be provided on the User Interface in the Update page. This component is also implemented in
Python, deployed in a Docker container and is tied to a dedicated queue on the broker.

7.4 API Gateway

The API Gateway component provides the single point of access to the MIRROR framework by external
systems and client application through the APIs. The REST style is used for the implementation of the
framework APIs.Using a gateway to manage and monitor the interaction with the back‐end components is
a well known pattern, which provides several advantages, as reported in the following.

The access to the system is controlled and managed, the gateway should manage both authentication and
authorization, possibly through standard services. If the APIs exposed by the system are well defined, they
do not change over time (or do not change very frequently), enabling the parallel and independent de‐
velopment of the back‐end and front‐end component without breaking their interaction: in particular the
back‐end system can evolve and change over time, but the client applications do not have to change ac‐
cordingly, provided the APIs and the exchange protocol and data are the same.

Page 28 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

Moreover, the gateway hides the technical APIs exposed by the back‐end services, preventing operations
which could break or corrupt the system; the APIs also provide an high level description of the system and
can be shared among all teams developing the different components, since they represent, in some way,
the functionalities provided by the system. The APIs are exposed by the gateway using a single or a limited
number of endpoints, even if behind the scenes each API could be related to a specific back‐end component
(e.g. the Indexer or the Notifier).

As done for the Message Broker, also for the API Gateway we made a quick market analysis in order to
identity a solution which was suitable for the MIRROR framework requirements. In particular, we focused
on established open source solutions with relevant applications, maintained by an active community.

The technical requirements included the capability to easily design, implement and maintain the APIs, the
support for current standards (e.g. Swagger14) and the possibility to deploy the solution in a Docker con‐
tainer.

We quickly evaluated three candidate solutions: WS02, StrongLoop, KongHQ.

KongHQ15 is a leading solution used for a variety of commercial solutions, with good support and documen‐
tation, natively deployed using Docker, with an extensive ecosystem and supports the OpenAPI16 standard.
The main drawback with this solution, from a MIRROR point of view, was the lack of some useful plugins
and tools in the open source version. Although not a relevant limitation, it also currently supports only
PostgreSQL and Cassandra DBs.

WS0217 is one of the most popular API management solutions, with a complete set of plugins and tools
for the API development, including graphical tools for API design and management, with an extensive doc‐
umentation and support for OpenAPI. The main drawbacks from a MIRROR perspective are that WS02 is
resource angry in terms of CPU and RAM, compared to other solutions and that the Docker installation
requires registration to the WS02 repository; moreover, the installation is not straightforward, but due to
the complexity of the system in terms of features (which makes it one of the market leaders), it requires
additional effort.

StrongLoop18 is part of the Loopback solution provided by IBM, is based on NodeJS, supports OpenAPI and
provides a flexible solution for the API development. Compared to other solutions, the administrative inter‐
face is limited but is pretty stable and easy to use. One of the drawbacks of the solution is that compared
to other solutions it requires somemanual steps for the configuration, but on the other hand this gives also
flexibility. The graphical tools for the API design are quite essential but are stable and complete. Moreover,
the installation is pretty straightforward since it is based on the popular npm tool from NodeJS ecosystem
and the deployment in a Docker container, although not native, is easy to manage.

Taking into account the provided features for API management, the documentation and support and also
the previous expertise available in the consortium, we have chosen StrongLoop. Moreover, since NodeJS
is one of the backbone technologies used by the MIRROR framework, with an extensive ecosystem of free
plugins and a large community, the maintenance of the solution is expected to be easier.

Compared to other candidate solutions, StrongLoop is quite lightweight and provides just the required com‐
ponents for the implementation of the API Gateway, without additional unnecessary components which

14https://swagger.io/, last retrieved 31 July 2020
15https://konghq.com/, last retrieved 31 July 2020
16https://www.openapis.org/, last retrieved 31 July 2020
17https://wso2.com/, last retrieved 31 July 2020
18https://strongloop.com/, last retrieved 31 July 2020

©MIRROR Page 29 (of 41)

https://swagger.io/
https://konghq.com/
https://www.openapis.org/
https://wso2.com/
https://strongloop.com/

MIRROR Deliverable D7.3

fall outside the scope of the MIRROR framework. Moreover, from a security by design perspective, the
NodeJS ecosystem and community provide tools, practices and support for the development of the API in
a secure way.

The API Gateway is deployed in a Docker container on the MIRROR demo server. The main endpoint of the
system is available at the following URL:

https://d-mirror.l3s.uni-hannover.de/api

During the second year of the project, the complete set of REST APIs exposed by the system will be devel‐
oped and tested. The MIRROR framework APIs will be documented in deliverable D7.4.

Page 30 (of 41) h2020mirror.eu

https://d-mirror.l3s.uni-hannover.de/api

Deliverable D7.3 MIRROR

8 Client Applications

In this Section we describe the Client Applications layer, which includes the User Interface and any client
applications which could integrate with the MIRROR system through the APIs exposed by the API Gateway.

The architecture of the MIRROR system is based on a clear separation between front‐end and back‐end
applications. The front‐end application (the client application) communicates with the REST APIs exposed
by a dedicated back‐end. This approach is based on the so called back‐end for front‐end pattern19.

As a consequence, the front‐end application lays completely within the client (the browser), according to
the Single Page Application (SPA) model. Although this model produces a shift of the business logic towards
the client, in our implementation we will move as much of the business logic as possible towards the APIs
in the back‐end. In this case, the back‐end will specialize the APIs provided by internal services. Another
pattern which will be used is the Façade: the back‐end APIs will hide the complexity of the APIs provided
by other services (see Section 7).

In the following we describe the mock‐up of the User Interface that was designed iteratively based on
feedback collected from users, and then we provide information the technologies and the approach used
for the implementation of the actual User Interface.

8.1 User Interface Design: Mock‐Up

In the following we briefly describe the design of the User Interface making use of a mock‐up. The iterative
process and the collection of feedback from users has been described in Section 3. The User Interface
mock‐up is available at the following URL.

https://d-mirror.l3s.uni-hannover.de/mockup

It is worth noticing that having adopted an Agile iterative approach, also themock‐up will continue evolving
during the project, so at the moment of reading the mock‐up could appear slightly different with respect
to the screenshots provided in the following, due to improvements and evolutions.

The User Interface has been designed with four main sections: Search, Dashboard, Update and Admin.
The user can access each part using the top menu, although links among the sections are expected when
navigating the results. The implementation approach is described in the next Section, in particular we will
adopt a Single Page Application (SPA) paradigm.

The Search section is intended for advanced search using Situations and a number of filters collected from
user feedback, as shown in Figure 9. The concept of Situations has been defined in the MIRROR‐CIM in
D7.2.

The user can perform the search using previously defined Situations (the Observed Situations), as shown in
Figure 10, in order to have direct access to previous search results, which can be bookmarked and shared
with others. The user could also be provided with a summary of the results from previous pages, the actual
implementation of this functionality will be checked with the users.

The user can then perform the search using one of theObserved Situations or can change themor can create
a new set of filters (which can in turn be saved as a new Situation or not). The filters include Time, Country

19https://samnewman.io/patterns/architectural/bff/, last retrieved 31 July 2020

©MIRROR Page 31 (of 41)

https://d-mirror.l3s.uni-hannover.de/mockup
https://samnewman.io/patterns/architectural/bff/

MIRROR Deliverable D7.3

Figure 9: User Interface mock‐up: landing page

Figure 10: User Interface mock‐up: observed situations

of Destination (COD), Country Of Origin (COO), Source Type, Language, MRSC, Named Entities, Topics and
Sentiment. The information required by such filters is provided by the analysis tools running in the Data
Analysis layer and natively from the Media Mining System.

The representation of the search results is shown in Figure 11. For each result a preview is provided, with
additional information. The key words used in the search for the different filters are highlighted.

The user could be more interested in the sources rather than in the visualization of the results, so it is
possible to change the visualization of the search results to show only the original sources, as shown in
Figure 12.

Page 32 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

Figure 11: User Interface mock‐up: Search page

Figure 12: User Interface mock‐up: search sources

For each result the user can access specific information for eachmedia type (text, images, videos), as shown
in Figures 13, 14 and 15, respectively. It is worth noticing that the provided information is generated by the

©MIRROR Page 33 (of 41)

MIRROR Deliverable D7.3

specific analysis tools and is different for each media type. For example, for what concerns the videos, the
user can play it or access specific segments (shots), which could be more relevant. The transcription, pro‐
vided by the Automatic Speech Recognition tool, is associated to the whole video or to a specific segments.
For each media type specific indicators are provided and the topics identified in a specific excerpt of the
text, image or video segment are highlighted.

Figure 13: User Interface mock‐up: text analysis results

Figure 14: User Interface mock‐up: image analysis results

Page 34 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

Figure 15: User Interface mock‐up: video analysis results

Figure 16: User Interface mock‐up: video summarization and automatic speech recognition

The User Interface includes also a Dashboard, with a number of widgets providing information from cross‐
media analysis and enabling specific searches, either by Situations or e.g. by selecting specific points of
interest on a map. This part of the User Interface is intended to show trending topics and other results on
a specific time range.

© MIRROR Page 35 (of 41)

MIRROR Deliverable D7.3

Figure 17: User Interface mock‐up: dashboard page

8.2 User Interface Implementation

For the implementation of the front‐end applicationwe adopted the Angular 10 platform. There are several
advantages provided by Angular 10, compared to other candidate technologies, although in the field of
Javascript frameworks several valuable alternatives are available, such as AngularJS, VueJS and React, just
to name a few.

Angular is open source, inspired by web standards, enhanced by modern capabilities, and includes devel‐
opment tools and is highly customizable. Angular provides a powerful and extensive ecosystem of free
extensions and plugins, supported by a large community: it is sponsored by Google and the development
is driven by the open source community. Angular is a quite popular solution for front‐end applications and
has proven to be successfully in small to large size applications for a huge variety of domains.

The most important factors behind the choice of Angular for the front‐end development are briefly summa‐
rized in the following.

Angular is platform, not a framework. A framework is usually just the code library used to build an appli‐
cation, whereas a platform is more holistic and includes tooling and support beyond a framework. Angular
comes with a leaner core library and makes additional features available as separate packages that can be
used as needed. Angular also provides:

• a dedicated CLI for application development, testing, and deployment;

• offline rendering capabilities on many back‐end server platforms;

• desktop‐, mobile‐, and browser‐based application execution environments;

Page 36 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

• a comprehensive UI component libraries, such as Material Design.

Component architecture The intention is to design each piece of the application in a standalone manner
that limits the amount of coupling and duplication across various parts of the program20.

Modern Javascript Angular is designed to take advantage of many features that are fairly recent to the web
platform. Most of these became part of the JavaScript specification in 2015with the release of ES2015 (also
known as ES6)

TypeScript Angular itself is written with TypeScript, which is a superset of JavaScript that introduces the
ability to enforce typing information. It can be used with any version of JavaScript, so you can use it with
anything ES3 or newer. The basic value proposition of TypeScript is it can force restrictions on what types
of values variables hold. It was a way to a get Javascript a more robust programming language.

Among the drawbacks of Angular in the context of MIRROR, it is worth mentioning that Angular has a steep
learning curve, the implementation of specific features is often achieved at the expense of simplicity and
is quite pervasive. In addition to the aforementioned advantages, Angular is stable, widespread, very well
documented, used to build complex applications occasionally, as already mentioned, and offers for free
all required tools for the application development. Other front‐end frameworks such as React provide a
lightweight core but require several external modules and plugins, while Angular, being a platform, includes
all requirement dependencies for the development (the so called Angular ecosystem). Finally, Angular was
considered a valuable choice also taking into account the expertise in the consortium.

Although Angular has been selected as the reference technology, nowadays another approach is gain‐
ing popularity for the development of front‐end applications, the so called microfrontends (see for exam‐
ple [Newman, 2019]), which can be considered as the transposition of the microservices [Newman, 2015]
to the front‐end: the front‐end application is implemented as a composition of separate micro front‐end
applications, each developed with its own framework (e.g. Angular, React, VueJS, etc.). This approach pro‐
vides additional flexibility and the concurrent development of the different parts of the front‐end, as done
with the microservices for the back‐end. This approach will be evaluated and eventually experimented, in
order to verify the extensibility of the system.

The MIRROR framework User Interface is available at the following URL on the demo server (registration
required):

https://d-mirror.l3s.uni-hannover.de/

The main entry point of the User Interface is a login page, as shown in Figure 18:

8.3 Other Client Applications

Although the MIRROR framework includes a User Interface, in special circumstances it could be necessary
to integrate the platformwith existing or third party systems or simply there could be specific requirements
preventing the access to the User Interface. In such situations, the integration with the MIRROR system
could be only via APIs (directly with the API Gateway). Although the User Interface includes relevant parts
of the system functionalities, the integration of external systems with the APIs is not prevented and can
provide valuable information to the users.

20https://github.com/w3c/webcomponents, last retrieved 31 July 2020

©MIRROR Page 37 (of 41)

https://d-mirror.l3s.uni-hannover.de/
https://github.com/w3c/webcomponents

MIRROR Deliverable D7.3

Figure 18: Login page of the MIRROR User Interface

Page 38 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

9 Conclusion

In this deliverable we described the first prototype of the MIRROR framework. Starting from the scenarios
identified in WP2 and from the architecture and the model designed in WP7, the prototype integrates the
technical components fromWP4, WP5 andWP6 into a coherent framework which comprises several layers:
data management, data analysis, integration, access and client applications.

The framework prototype provides a validation of the MIRROR approach for the automated media analysis
and the integration of technologies into a coherent framework targeting the main scenario identified in the
project, namely the detection of migration‐related (mis)information campaigns.

For each layer the role and the integration mechanism of the developed components has been described.
The development of the framework is the result of the joint effort of all project partners, both technical and
non technical, based on an Agile approach supporting the collection of feedback from users and frequent
iterations among technical partners. The partners representing potential future adopters and users of the
framework have provided their feedback and validated the requirements, mainly for what concerns the
expected functionalities and user experience with the framework user interface.

A mock‐up of the user interface has been iteratively created, in order to collect the feedback and create
a common ground for the discussion. For what concerns the development activities, a collaborative envi‐
ronment has been established based on two Agile values: the collection of feedback from users and the
timeboxed iterations during the development, organizing weekly calls and adopting tools to manage the
tasks and priorities.

Finally, the environment for continuous integration of the results has been prepared, adopting cutting edge
technologies for the development and deployment of the prototype. Targeting the project pilots, the de‐
ployment mechanism leverages DevOps practices, with automation and configuration management tools.

9.1 Assessment of Performance Indicators

The framework is one of the outcomes expected by the MIRROR project, in particular it is associated to
Objective 5 (Delivery of tools, practices and methods that enable awareness for impact).

For what concerns the performance indicators, being an integration platform, it enables the assessment
of the KPIs of the integrated components not only as individual tools but also in the context of the overall
MIRROR system. For the assessment of the performance indicators of the technical components please
refer to the corresponding deliverables fromWP4, WP5 and WP6.

For what concerns the MIRROR system as a whole, the two related indicators are KPI12 (Percentage of col‐
lected requirements fulfilled (mid project + full project)) and KPI15 (Level of user satisfaction with developed
MIRROR system). Both indicators are not supposed to be assessed directly in the first prototype deliverable,
but it is worth mentioning that the design of the framework and in particular of the user interface has been
based on the scenarios defined in WP2 and on iterations with the project users, who had the opportunity
to provide their feedback not only during plenary meetings, but also in periodic WP7 calls dedicated to the
discussion of the system and of the user interface. Targeting the project pilots, an assessment of the level
of user satisfactions and a review of the collected requirements will be performed.

© MIRROR Page 39 (of 41)

MIRROR Deliverable D7.3

9.2 Next Steps

The project will deliver three main releases of the framework. After the first prototype implementation
described here, the second year of the project will focus mainly on development and engineering of the
system, on improving the automated deployment mechanism for the continuous integration of the new
functionalities and on testing. In the meanwhile the information model will be refined and completed
towards the release of the final version in D7.4 at M27. The second release of the MIRROR framework will
be described in D7.5 at M30.

Page 40 (of 41) h2020mirror.eu

Deliverable D7.3 MIRROR

10 References

[Hohpe and Woolf, 2003] Hohpe, G. andWoolf, B. (2003). Enterprise Integration Patterns: Designing, Build‐
ing, and Deploying Messaging Solutions. Addison‐Wesley Longman Publishing Co., Inc., USA.

[Humble and Farley, 2010] Humble, J. and Farley, D. (2010). Continuous Delivery: Reliable Software Re‐
leases through Build, Test, and Deployment Automation. Addison‐Wesley Professional, 1st edition.

[Kim et al., 2016] Kim, G., Debois, P., Willis, J., and Humble, J. (2016). The DevOps Handbook: How to
Create World‐Class Agility, Reliability, and Security in Technology Organizations. IT Revolution Press.

[Newman, 2015] Newman, S. (2015). Building Microservices. O’Reilly Media, Inc., 1st edition.

[Newman, 2019] Newman, S. (2019). Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith. O’Reilly Media, Incorporated.

Glossary

COD Country of Destination. 31

COO Country Of Origin. 32

MIRROR‐CIM MIRROR Conceptual Information Model. 15, 31

MRSC Migration‐Related Semantic Concept. 9, 32

© MIRROR Page 41 (of 41)

	Executive Summary
	Introduction
	Background
	Target Audience
	Structure of the Deliverable

	Requirements and Scenarios
	First scenario for prototype implementation

	Continuous Integration Environment
	Agile Approach
	Development Environment
	DevOps practices
	Deployment Environment

	MIRROR Framework Architecture
	Data Management Layer
	Data Analysis Layer
	Access Layer
	Integration Layer
	Client Applications Layer
	Security and privacy by design
	Data Management components for security and privacy
	Access components for security and privacy

	Data Management Layer
	Data Collector
	Indexer
	Media Mining System
	Components for privacy and security

	Data Analysis Layer
	Text Analysis
	Named Entity and Concept Recognition
	Sentiment Analysis

	Audio-visual Media Analysis
	Visual Media Annotation and Sentiment Analysis
	Visual Media Collection Summarization
	Automatic Speech Recognition

	Cross-media Network Analysis
	Cross-media Network Construction
	Bias Detection and Reduction

	Integration and Access Layers
	Message Broker
	Activity Logger
	Notifier
	API Gateway

	Client Applications
	User Interface Design: Mock-Up
	User Interface Implementation
	Other Client Applications

	Conclusion
	Assessment of Performance Indicators
	Next Steps

	References
	Glossary

